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Abstract—Much attention has been paid to modeling human
behavior and social interactions for epidemic and pandemic
predictions. Nearly all of these models and predictive simulations
rely on synthetic individuals to simulate social patterns using
data gathered from databases such as census and transportation
information. At the same time the ubiquity of mobile devices and
online social networks have created an opportunity for real-life
simulations of disease transmissions.

In this paper, we lay the groundwork for a mobile epidemic
simulation framework by creating a simulation model of indi-
viduals walking in a defined space with varying durations. The
population size and walking area are varied to determine the best
parameters for simulating disease spread. The effects of different
infection probabilities are also investigated for a more realistic
simulation framework. The resulting information is employed
to create disease social networking maps used to determine the
importance of each individual in the network and the connections
between the ground zero source of the disease and the total
infected population at the end of the simulation.

I. INTRODUCTION

Accurate prediction of epidemic and pandemic diseases is

essential to preventing both infections and deaths related to

each modeled disease. The Severe Acute Respiratory Syn-

drome (SARS) outbreak in 2003 affected over two dozen coun-

tries in four continents. The SARS virus only infected 8,098

people worldwide, with 774 dying [1], but the threat of its

spread caused great panic around the world. The 2009 H1N1

pandemic, also known as Swine Flu, infected an estimated

61 million people in the United States with 12,470 deaths

[2]. This disease led to a widespread push for vaccinations

of children and the elderly. However, the prediction of the

spreading characteristics of H1N1 was difficult.

Besides these highlighted pandemics, the spreading of com-

mon cold and flu viruses are also critical to analyze. There

are over one billion colds in the United States each year with

children averaging three to eight colds per year [3]. All of

these examples emphasis the need to model and predict the

spread of similar diseases.

Each of the discussed viruses and bacterial infections has

different requirements for transmission, ranging from physical

contact to being in the same room as an infected person.

Additionally, each one has a probability of being transmitted

when a particular person-to-person contact distance has been

met. Hence these parameters mean that a single type of sensor

can not be used to estimate the transmission of the disease.

Specific properties of individuals such as the age, sex and the

health status also must be used to evaluate their probabilities to

get infected. Moreover, the characteristics of particular social

group, in which the disease spreads, and its environment are

also critical when determining the infection probabilities.

In this paper, we utilize a disease model to define the nec-

essary parameters, such as population size and area, required

for the implementation of the mobile version of our modeling

framework for epidemic diseases, the EpidemicSim system.

This information lays the groundwork for utilizing the ubiquity

of mobile devices as the modeling platform. Simulating these

requirements will prove the feasibility of using real-life human

interactions as a unique disease modeling platform.

The number of social connections people have in the net-

work is also employed to evaluate each user’s role in the spread

of disease. Metrics such as Betweenness, Degree, Centrality

and Bridges [4] are critical to understand the importance

of each individual on the transmission of the disease. The

combination of these values defines various characteristics of

individuals such as the probability of being responsible for

the transmission of the disease to a specific community or

the popularity in terms of getting infected. Therefore, the

number of connections, the number of hubs and bridges in

the network are also analyzed to have a better model for the

framework. The goal is to utilize this system in an open, yet

well defined environment such as a university campus where

a maximum number of interactions can occur and an accurate

social network map can be produced.

The combined information of life-like human interaction

with disease spread simulation can provide a unique platform

for the modeling of human behavior and interaction. Therefore

mobility model used to simulate the movement of people is

critical in simulations. Our system uses a realistic mobility

model, based on Lévy walk, to simulate the movement of

people in the simulation area. The proximity data and the

interaction information used in the system depend on this

mobility model.

The rest of the paper is organized as follows. Section II

summarizes the related work. We provide a detailed descrip-

tion for our approach in Section III. We show the simulation

results in Section IV and finally conclude in Section V.



II. RELATED WORK

Disease simulations employ mathematical models to esti-

mate the probability of infection and spread. These models

are generally applied to synthetic individuals on powerful

computers to emulate real-life social interactions and move-

ments. The generation of accurate synthetic individuals can

be accomplished by using databases of information such as

census data or transportation and models from other domains

such as social and economic domains. The models must be

scalable and configurable to allow for different diseases to be

introduced to multiple different environments.

The Synthetic Environments for Analysis and Simulation

(SEAS) [5] technology developed by Purdue University and

licensed to Simulex uses agent based modeling to simulate a

virtual world. The artificial agents represent fine detailed deci-

sion making while real human players represent the countries,

firms, and so on in the rest of the virtual world. These models

have been used to simulate biological attacks in the BioReady

case study.

The Los Alamos National Laboratory has also developed a

stochastic, agent-simulation engine called EpiSimS [6]. The

EpiSimS model uses 20 million synthetic individuals per

region, with the United States divided into 15 regions. Each

individual’s activity model is derived from the TRANSIMS [7]

transportation simulation code. TRANSIMS is used to analyze

traffic movement by the U.S. Department of Transportation

but its mixing patterns are consistent with person-to-person

social networks. EpiSimdemics [8] by Barrett et al. is a

parallel algorithm, which simulates the spread of a disease

in large social networks. EpiSimdemics uses individual-based

models and scales up to social networks with 100 million

individuals by exploiting the semantics of disease evolution

and propagation.

Both of these systems rely on modeled behavior from

databases and other model inputs to generate a virtual world

of individuals. All of the movements and interactions are

simulated as near as possible to real life. EpiSimS also

provides limited social networking results in a cone shape from

the red X in the tip to the base of the cone.

Real life disease spread simulations have been proposed

and implemented by a team at the University of Cambridge.

The FluPhone [9] application uses a smartphone’s Bluetooth

connection to detect other Bluetooth devices nearby and send

back the information to the server. It also asks participants

to record their flu symptoms, if any. The application also can

be extended to simulate virtual disease outbreaks. The use of

Bluetooth for ranging information is the main limitation of the

system as it can extend tens of meters from the transmitting

source. Yoneki et al. [10] presented a study of epidemic spread

in dynamic human networks from real connectivity traces.

The data used in this study include the traces taken from the

Cityware project, in which there are nine Bluetooth scanners

deployed across the city of Bath, England. These devices were

deployed to monitor the presence of mobile devices within

a ten metre radius [11]. The proximity of the devices are

determined by using the log data and some of the devices

used Bluetooth scanning programs [12] to collect the detected

device information via GPRS. The authors show the effects

of periodic human activity, lifetime of the virus and different

types of social hub nodes on the epidemic spread.

The underlying network and the movement of the nodes are

critical to model the disease spread. The spread of viruses in

plant populations [13], in animal societies [14] and even in

digital networks share important characteristics and modeled

similarly. The travel models in a city [15] or within the

worldwide airline network [16] are studied for this purpose.

We consider people moving in an environment such as a

university campus in our simulations. There are various human

mobility models presented in the literature. The random walk

model group is one of these, in which the next destination

of a node and the velocity are chosen randomly based on the

probability distribution. Random Waypoint (RWP) [17] serves

as the base of this group and has been extended for many other

models [18]. However, random walk models are not suitable

for human mobility in realistic scenarios. Human mobility has

several characteristic features, which have been observed by

different measurement methods. Examples of these features

are truncated power-law distributions of pause times, inter-

contact times, fractal waypoints and heterogeneously defined

areas of individual mobility. Rhee et al. [19] shows that these

properties are similar to the features of Lèvy walks and used

these properties to design Truncated Lévy Walk (TLW) model,

which is a random equivalent mobility model for human walks.

TLW is used in our simulations to create a realistic human

mobility.

III. EPIDEMICSIM SYSTEM

The EpidemicSim system is modeled to validate the con-

cepts presented. The three main components used in MATLAB

[20] includes the mobility model, interaction computation, and

the network map.

The first component is the mobility model for human

mobility. This is needed to simulate the walking paths of the

individuals across a defined area. The walking path model is

planned to be replaced by the user carrying a smartphone in

future implementations.

The second component is the distance measuring and in-

teraction computation. For each time period defined in the

walking model, the pairwise distance between each individual

must be calculated. If two individuals are within the defined

infection distance, their susceptibility and infection values are

checked. An infected individual will only infect a susceptible

individual. This basic concept will be carried forward to the

mobile version of the system. However, each disease will

define its infection probability and infection range require-

ments. The smartphone’s sensors will be used to apply these

requirements.

The third component of the simulation model, the network

map, is used to aid in infection analysis using social network-

ing metrics. This component will run on a backend server



in the future system and will provide further analysis of the

infection network.

A. Mobility model

Lévy walk is an optimal way to find randomly dispersed

objects [21]. Lévy walk is observed as the mobility model

in most of the animal foraging patterns. It is shown that

human mobility also can be modeled by Lévy walk model

[19]. Lévy walk is a random walk with step-lengths distributed

according to a heavy-tailed probability distribution. Lévy

walks are Markov processes and after a large number of steps,

the distance from the origin of the random walk tends to

be reach stable distribution. Lévy distribution is the Fourier

transformation of the moving distance of a single random walk

and Rhee et al. [19] gives its PDF as follows:

fz,α(x) =
1

2π

∫ ∞

−∞

e−iztφ(t)dt

where φ(t) = e−|Ct|α and C is a constant.

The distribution can be approximated by a power law of the

form y = x−α where 0 < α < 2. Each step in Lévy walk can

be expressed by a tuple L = (1, θ,∆tf ,∆tp). ∆tf indicates

the duration and it is chosen for each walk from a probability

distribution P (l). ∆tp specifies pause time at the end of a

walk and θ is the random direction taken by a node. A Lévy

walk contains many short walks and a small number of long

walks. The resulting pattern depends highly on the value of

α used in the system. As α becomes greater, the number of

short walks increases.

The TLW mobility model for our simulation uses the alpha

and beta values of 0.88 and 1. The square areas of 1000×1000

and 2500×2500 are also used and together with the alpha and

beta values, these parameters correspond to a college campus.

The distances are unitless for the TLW model. However, we

will refer to them in feet for an easy reference.

An example of a social network map for 1000×1000 square

distance is given in Fig. 3. Each individual moves at 30 second

intervals and is allowed to pause for a minimum of 30 seconds

and a maximum of 600 seconds. The number of individual

paths and the duration of each run is varied to allow the

evaluation of multiple scenarios within one test environment.

B. Distance Measurement and Interaction Computations

The TLW model produces one path for each individual

over a fixed duration. A path consists of x and y coordinates

for each 30 second interval. The xy coordinates are used to

generate the distance between each individual, pairwise, at

each time interval. The used distance formula is as follows:

distance(I1, I2, t) =
√

(x1(t)− x2(t))2 + (y1(t)− y2(t))2

where I1 and I2 are the locations of two individuals at time

t.

The individual positions at each interval are stored in a

location matrix is also an input to the interaction component.

The interaction component determines whether two individuals

met during a time interval. For the purpose of this simulation,

two nodes are interacting if they are within ten feet of each

other during the interval. This value was chosen as part of the

disease model and is an input to the system, allowing for the

future application of a more complex disease model.

C. Disease Model and Mapping

The pairwise analysis of the distances between each indi-

vidual at all time intervals provides the basis for the disease

model. For the simulation of a disease spread in the population,

a random individual is chosen to be the initial carrier for the

disease.

The status of each individual is tracked using two attributes.

The first attribute is whether a node is susceptible to being

infected by the disease. All individuals, except the initial

infected person, begin in this state. The second attribute is

whether a node is infected. If a node comes into contact with

an infected node and it is susceptible (not infected), it will be

infected. This approach is similar to the standard Susceptible,

Infectious, Recovered (SIR) epidemic model [22]. However

for our system, individuals in the simulation do not enter the

recovered state.

In addition to the infected state, each individual determined

to be infected is also tagged with the id of the individual that

infected the person. This method provides information on the

social interactions among all of the individuals in the network.

The interaction matrix that is a result of the application of the

disease model to the TLW paths is used to generate a network

map as well as to provide the basis for social networking

analysis. These results are presented in Section IV.

IV. SIMULATION STUDY

The simulations are conducted by using the model described

in Section III and they are divided in two main groups. In the

first group, the probability of infection is taken as 100% when

two people contact. In other words, when a susceptiple (not

infected) person comes into contact with an infected person,

the disease is transmitted. On the other hand, the second

simulation set includes infection probability of the disease

such that a susceptiple person is infected with a probability

defined according to the disease when the person comes into

contact with an infected person.

Table I summarizes the main simulation parameters used

in our simulation study. The settings are chosen to match the

requirements of the scenario. In each simulation, the number

of individuals, the square range or the duration is varied.

Two population size of 250 and 500 were considered in the

simulations. Durations were 240 minutes (four hours) and

480 minutes (eight hours). The square ranges of 1000×1000

and 2500×2500 were used. Each run was evaluated for the

number of infected people, the number of people infected by

the initial infected person and the maximum number of people

infected by a single individual. Additionally, the number of

hubs, defined as a node with more than two connections, and

bridge nodes, which are linking hubs, are also employed.



TABLE I
SIMULATION PARAMETERS

Parameter Value

Small population size 250

Large population size 500

Small area size 1000x1000

Large area size 2500x2500

TLW α 0.88

TLW β 1

Simulation time 240-480 mins

Number of runs 30

A. Simulation Results

1) Simulation group 1: There are six simulation sets in the

first simulation group and each of them had five runs with the

parameters defined in Table I. Table II shows the results for

all the simulation runs.

The initial simulations were run with a range size of

1000×1000. The population sizes used were 250 and 500

people for four hour duration. For both populations, almost

the entire population was infected in most of the simulations.

In only one case, 28% of the population remained uninfected.

The next two sets utilized the same population sizes and

duration with a larger walking area. The square range of

2500×2500 was considered. The number of infected individ-

uals during these runs decreased significantly compared to the

sets with smaller walking areas. The runs of a population size

of 250 individuals had 1 to 22 infected people. The infected

people for the population size of 500 individuals ranged from

7 to 90.

The combined results of the simulations are significant in

showing that increasing the walking area reduced infections

by nearly 95% in the small population and 88% in the

larger population. This decrease is also significant because the

disease model is simplistic and only a single time interval of

contact within 10 feet causes an infection. In a real world

epidemic model, diseases may not transfer as easily, thus

reducing the infection rate even further.

In the final two simulations, the duration is increased to

eight hours while keeping the population size constant at 500

individuals. One set utilized the square range of 1000×1000

and the other used the square range of 2500×2500. As in

the runs with shorter durations, the smaller range yielded an

infection rate of 100%. When the area size was increased,

the number of infected individuals dropped slightly to an

average of 441 compared to 500 in the smaller range. In the

previous set with the same population size and square range,

the infection rate for a four hour duration averaged 12%. When

the duration was doubled, this value increased to 88.16%.

2) Simulation group 2: The simulation groups in the second

simulation set included an additional parameter, which is the

probability of infection. The three different values used for

the probability of infection are 20%, 50% and 70%. Each

simulation set has five runs with the probability of infection

and the parameters defined in Table I. Table III shows the

results of the simulation runs.

The simulations with population size of 250 in an area

of 2500×2500 were run for four hours. Three different sets

of simulations were run for all three different values of the

infection probabilities to observe the effect of the infection

probability on the results. Similar to the first set of simulations,

the number of infected people, hubs and bridges are observed

in these conditions.

The simulation runs for a population of 250 people with

the varied infection probabilities are compared to the results

of the simulation group 1 in Fig. 1. Simulation group 1

utilizes an effective infection probability of 100% as any

contact automatically results in an infection. In all cases with

a duration of four hours and a range of 2500×2500, the

infection rate was low. Infection probabilities of 20%, 50%

and 70% resulted in averages of less than three individuals.

This compares with an infection average of 11.2 for the runs

from group 1. Statisically this shows that with a large area

and low population infection probability has little effect on the

results. Fig. 2 shows that by doubling the population size, the

infection rate increases approximately 10 fold for an infection

probability of 20% and more than 20 fold for an infection

probability of 70%.

The effect of the infection probability is observed better

when the population size is doubled and the area size is

decreased to 1000×1000. In the first set of simulations with

the same conditions, shown by the dark grey bar in Fig.

2 for the 100% probability, the whole population becomes

infected at the end of the simulation period. When the infection

probability of 20% is used, the average number of infected

people decreases by 54.3%. In particular simulation runs, the

number of infected people is as low as 56 or 67. However,

on average, approximately half of the population becomes

infected. When the infection probability is increased to 70%,

the results are equal to the results of the 100% probability

group.

When the numbers of connections are compared, the differ-

ence is again significant. The numbers of hubs and bridges are

greater than 115 and 106 respectively in all simulations for the

first simulation group. When the infection probability of 20%

is used, the numbers of hubs and bridges drop to minimum

of 14 and 13 with the averages of 59.8 and 54.2. The average

number of maximum connections also drops from 10.6 to 8.6.

For the 70% sets, the maximum number of connections and

the number of hubs and bridges are also very similar to the

first simulation group. Therefore, we can conclude that in these

conditions, the infection probability is effective only if it is a

low value such as 20% mirroring the effect on the number of

infections.

Simulating a simple disease model while applying modeled

human mobility yielded important results that can be used in

the future work to implement a real world epidemic simulation

model. First, increasing the population size in a small walking

area with a short duration has little effect as nearly all

individuals became infected even with a small population.

Second, when the walk space was increased by nearly six times

with the same population density and duration, the infection



TABLE II
EPIDEMICSIM SIMULATION RUNS

Run
#

Population
Size

Duration
(min)

Range Total
Infected

Initial
Infected
Person
Connections

Max
Connections

Hubs (>2
Connections)

Bridges
(Link Two
or More
Hubs)

1 250 240 1000 250 7 9 61 60
2 250 240 1000 250 5 7 66 60
3 250 240 1000 250 4 10 62 59
4 250 240 1000 249 8 8 63 60
5 250 240 1000 180 5 7 45 41

1 250 240 2500 4 2 2 0 0
2 250 240 2500 17 2 4 3 2
3 250 240 2500 1 0 0 0 0
4 250 240 2500 12 4 4 3 3
5 250 240 2500 22 4 4 4 2

1 500 240 1000 500 9 10 122 113
2 500 240 1000 500 8 11 115 109
3 500 240 1000 500 12 14 118 106
4 500 240 1000 500 5 8 124 114
5 500 240 1000 500 3 10 115 108

1 500 240 2500 80 6 8 13 11
2 500 240 2500 32 4 5 7 6
3 500 240 2500 78 4 9 18 15
4 500 240 2500 7 4 4 1 0
5 500 240 2500 99 3 5 25 23

1 500 480 1000 500 4 9 123 113
2 500 480 1000 500 7 10 133 124
3 500 480 1000 500 7 8 126 116
4 500 480 1000 500 9 9 132 125
5 500 480 1000 500 8 10 129 120

1 500 480 2500 483 9 9 118 111
2 500 480 2500 485 9 10 123 116
3 500 480 2500 452 4 9 118 112
4 500 480 2500 289 6 7 77 73
5 500 480 2500 495 6 8 119 110

rate was significantly less, as expected. Finally, when the

duration was doubled, the infection rate returned to nearly the

same level as the small area tests with the same population

size. Therefore, when the walk area is very large with the

relatively small population, the duration must be increased

significantly to allow for adequate coverage by all individuals.

When the walk space is relatively small, the population size is

not as significant and increasing duration may not be required.

Finally, if the walk area is very large and a longer duration is

not possible, similar results can be produced by capping the

walk space individuals can use. Since humans may not walk

exactly as they do in the model, this information may need to

be adjusted when the system is ported to mobile devices.

B. Network Maps and Social Analysis

In each simulation, the social map of the network is drawn

according to the proximity data gathered from the simulation.

Fig. 3 shows an example social network map of infection

spread in a network of 500 nodes in an area of 1000×1000.

The uninfected nodes throughout the simulation time are not

included in the figure.

20 50 70 100
0

2

4

6

8

10

12

Infection probability percentage

N
u

m
b

e
r 

o
f 

in
fe

c
ti
o

n
s

Duration: 240, Range: 2500

Fig. 1. Infections vs. Infection Probability - 250 People - Sets 1 and 2

The number of connections each node has over the life time

of the simulation shows the importance and the popularity of

the node. The nodes with high total connections in the network

map are the high degree hub nodes. The critical effect of the



TABLE III
EPIDEMICSIM SIMULATION RUNS WITH INFECTION PROBABILITIES

Run
#

Population
Size

Duration
(min)

Range Total
Infected

Initial
Infected
Person
Connections

Max
Connections

Hubs (>2
Connections)

Bridges
(Link Two
or More
Hubs)

Infection
probability

1 250 240 2500 1 0 0 0 0 20%
2 250 240 2500 3 1 2 0 0 20%
3 250 240 2500 2 1 1 0 0 20%
4 250 240 2500 2 1 1 0 0 20%
5 250 240 2500 2 1 1 0 0 20%

1 250 240 2500 3 1 2 0 0 50%
2 250 240 2500 6 2 2 0 0 50%
3 250 240 2500 1 0 0 0 0 50%
4 250 240 2500 1 0 0 0 0 50%
5 250 240 2500 2 1 1 0 0 50%

1 250 240 2500 4 2 2 0 0 70%
2 250 240 2500 1 0 0 0 0 70%
3 250 240 2500 4 2 2 0 0 70%
4 250 240 2500 2 1 1 0 0 70%
5 250 240 2500 2 1 1 0 0 70%

1 500 240 1000 425 9 9 122 111 20%
2 500 240 1000 280 5 9 75 68 20%
3 500 240 1000 314 5 11 71 63 20%
4 500 240 1000 56 4 8 14 13 20%
5 500 240 1000 69 6 6 17 16 20%

1 500 240 1000 500 6 10 128 125 70%
2 500 240 1000 500 8 12 125 113 70%
3 500 240 1000 500 9 12 126 112 70%
4 500 240 1000 500 6 13 124 117 70%
5 500 240 1000 500 11 11 124 115 70%

1 500 240 2500 30 4 5 7 6 70%
2 500 240 2500 28 2 7 5 4 70%
3 500 240 2500 60 4 10 13 12 70%
4 500 240 2500 22 4 7 3 3 70%
5 500 240 2500 2 1 1 0 0 70%
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Fig. 2. Infections vs. Infection Probability - 500 People - Sets 1 and 2

hub nodes can be observed in Fig. 3, which gives the disease

social network map from the simulation of 500 individuals

in an area of 1000×1000. The nodes represent the infected

individuals, the links represent the transmission of the disease.

Uninfected individuals are not represented in the figure.

The transmission of the disease is mainly through the hub

nodes in our framework, which forms a realistic feature of

our simulation model. One of the interesting results of the

simulations shows that although the first person is the central

source of the infection, that person is generally not the highest

order hub in the simulation.

In all but one of the simulations in the area of 1000×1000,

the initial person did not have the most connections. Addition-

ally, an increase in the population size in this scenario does not

have a major effect on the number of connections the initial

and highest order hubs have. The connection number range

for a population of 250 was four to eight for initial hubs and

seven to ten for highest order hubs. When the population was

increased to 500, the values changed to three to twelve and

eight to fourteen. The major difference was the doubling of the

number of hubs and bridges, from an average of 23.76% and

22.40% to 47.52% and 44.00%. Both values are the number

of hubs and bridges vs. the total infected population. Also,

the number of bridge nodes was approximately equal to the

number of hubs, so nearly every hub was interconnected.



Fig. 3. The network map of the disease.

When the duration of the simulations are doubled, the

number of people infected by the initial individual was similar,

ranging from four to nine. The number of hubs and bridges

versus the total infected population averaged 51.44% and

47.84% respectively. These numbers are very similar to the

runs with shorter durations. When the simulation duration is

doubled and the walking area size is increased to 2500×2500,

the number of infected individuals that were in contact with

the initial infected individual was also similar, ranging from

four to nine compared to three to six in the shorter duration

run. The number of hubs and bridges versus the total infected

was most similar to the same population size in the smaller

walk space, averaging 44.40% and 41.76%.

Using real trace data, Yoneki et al. [10] showed that

removing the top 100 hub nodes out of over 7500 nodes

from consideration yields a significant reduction in the rate of

epidemic spread. In the example network of Fig. 3, removal of

seven highest degree hubs result in reduction over 30% in the

number of infected nodes. This is an important insight for the

social network, which can be used to decide on the order of

individuals to protect, to train or to separate from the network.

V. CONCLUSIONS

In this paper, we presented a series of systems which

intend to lay the groundwork for modeling epidemic spreads

using mobile devices. We developed a simulation model, using

MATLAB, to evaluate the basic information needed to build an

accurate mobile model and applied social networking metrics

to assess the importance of each individual in the population.

We also developed network maps to show an individuals

position in a social network.

Further work in this area will include expanding the disease

simulation to include real disease parameters and probabilities

and porting the design to a mobile environment.
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