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Abstract—This paper describes our experiences with building
and deploying a low-cost participatory system for urban air
pollution monitoring in Sydney. Though air pollution imposes
significant health costs on the urban community globally, to-
day’s published data on pollution concentrations is spatially too
sparse, and does not allow for sufficiently accurate estimation
of exposures for (potentially mobile) individuals in order to
make medical inferences. The HazeWatch project described in
this paper uses several low-cost mobile sensor units attached
to vehicles to measure air pollution concentrations, and users’
mobile phones to tag and upload the data in real time. The greater
spatial granularity of data thus collected enables creation of
pollution maps of metropolitan Sydney viewable in real-time over
the web, as well as personalized apps that show the individual’s
exposure history and allow for route planning to reduce future
exposure. We share the insights we obtained from building and
trialling such a system in Sydney, and highlight challenges that
can be addressed collaboratively by groups developing similar
systems world-wide.

I. INTRODUCTION

One of the basic requirements of human health and well-
being is clean air. However, the World Health Organisation
(WHO) estimates that around 1.4 billion urban residents
worldwide are living in areas with air pollution above recom-
mended air quality guidelines [28]. Chronic exposure to air
pollution increases the risk of cardiovascular and respiratory
mortality and morbidity, while acute short-term inhalation
of pollutants can induce changes in lung function and the
cardiovascular system exacerbating existing conditions such
as asthma, chronic obstructive pulmonary disease (COPD),
and ischemic heart disease [5], [21]. In fact, in Australia,
air pollution is estimated to kill more people each year than
road accidents [9]. Monitoring and controlling air pollution
is high on the public consciousness in both developing and
developed countries, including Australia that has among the
highest prevalence of asthma in the west [2].

While some government agencies do monitor and publish
metropolitan air quality (e.g. the New South Wales state
government air quality index [22]), there are two fundamental
limitations to the existing approach: First, the spatial resolu-
tion of the pollution sampling is very poor. For example, the
greater Sydney area has approximately 15 active monitoring
sites, separated from each other by tens of kilometres. This
necessitates the use of mathematical models to estimate pollu-

tant concentrations over vast sections of the metropolis, which
can be both complex (requiring inputs such as land topog-
raphy, meteorological variables and chemical compositions)
and inaccurate (e.g. due to highly variable meteorological
conditions [12]), leading to incorrect inferences [30], [31].
Second, current observations of concentrations do not reflect
actual exposures experienced by individuals, due to spatial het-
erogeneity of pollutant concentrations and individuals mobility
patterns, such as time spent and activity levels at home, at
work, and commuting. Estimating personal inhalation intake
is essential not only to inform risk assessment for epidemi-
ological studies but also for the individuals to manage risk,
both by retrospectively understanding the pollutant levels that
affect their health, and in prospectively choosing commuting
routes and timings that reduce their risk [23].

In this paper we describe project “HazeWatch”, which
aims to crowd-source fine-grained spatial measurements of
air pollution in Sydney, and to engage users in managing
their pollution exposure via personalized tools. Our specific
contributions are: (1) We architect and prototype a low-
cost system for users to contribute air pollution data. This
includes development of a portable sensing unit mounted on
vehicles, a mobile phone application for data tagging and
uploading, and a centralized repository for hosting the data.
(2) We show how the data can be analysed and consumed
by users. This includes appropriate models for interpolating
the spatio-temporal data points, visualisation of pollution over
a geographical map of the area, and mobile apps that show
personal exposure and low pollution travel routes. (3) We
test and deploy our system with a small number of users to
show that it yields much more accurate estimates of personal
exposure than existing systems based on coarse-grained data
from static sensors, demonstrating the potential benefits that
larger scale deployments can bring to our understanding of the
relationship between pollution exposure and health.

The rest of this paper is organized as follows: §II describes
prior efforts to build systems for urban air pollution moni-
toring. In §III we describe our system architecture for data
collection, and in §IV we describe how the data is visualized
and personalized. §V describes our deployment experiences,
and the paper concludes in §VI.
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Fig. 1. System Architecture

II. PRIOR WORK

The idea of crowd-sourcing pollution data from users has
been investigated by several projects around the world in the
past few years. Among the first projects with this vision is the
MESSAGE (Mobile Environmental Sensing System Across
Grid Environments) project [15] from Cambridge University
and partners in the UK, which aims to develop fixed and
portable devices for high-density measurement of concen-
trations of carbon monoxide and nitrogen oxides in urban
areas. They have very recently reported their development
and deployment experience [20] in the Cambridge area, and
demonstrated that the use of low-cost fixed and portable
devices deployed in high densities can give a much more
accurate picture of the spatial and temporal structure of air
quality in the urban environment. The scale and scope of
this project is commendable, and the contributions in building
the devices, deploying them city-wide, and modeling the
collected data are noteworthy; however, we believe that the
portable devices still remain relatively expensive and bulky
(at around 445 grams) for regular use by pedestrians/bicylcists,
and personalized tools (e.g. mobile apps) for estimating and
managing exposure remain under-explored.

Vanderbilt University, supported by Microsoft, embarked
upon a similar project, called MAQUMON [27], that devel-
oped portable wireless sensor units for measuring ozone, nitro-
gen dioxide and carbon monoxide. Their units are autonomous,
having onboard flash (for storage), GPS (for location) and
GSM (for communication) capabilities, making them much
more bulky and expensive compared to our design (as de-
scribed later in this paper). They also developed innovative
web-based visualization (e.g. contour-maps) and personaliza-
tion (e.g. route-planning) tools [13], making it more accessible
for lay users. To the best of our knowledge, this project did

experiments has not undertaken any long-term deployments.
Intel has also been developing as part of the CommonSense

project [11] a prototype that is a portable handheld device
capable of measuring various air pollutants. This data can be
uploaded in real time and viewed on Google Maps. We believe
the Common Sense project is currently running trials with
these devices attached to the rooftops of street cleaners in the
city of San Francisco. Several other projects, such as Sensaris,
iSniff, etc. have similar goals to ours, but probably the most
noteworthy is the well-funded OpenSense project [1] that is
ongoing at EPFL Switzerland. To the best of our knowledge
they have successfully deployed several air monitoring units on
top of public buses. In spite of the replication of effort across
these several projects, we believe they are all worthwhile
efforts since they collectively explore different deployment
scenarios (e.g. buses versus private cars) in different regions
of the world.

In addition to the above large-scale projects, several smaller
efforts have looked at various individual aspects of the system.
Low-cost sensors and hardware devices for measuring air
pollution have been explored in [7], and the design of the
APOLLO (Air POLLutants mOnitoring system) sensor node
using MEMS/infrared gas sensors is undertaken. Their paper
is noteworthy for the detailed discussion of the issues en-
countered in the hardware design, including sensor selection,
impact of humidity and temperature, different supply voltage
required by the different sensors, power management, wake-up
latencies for sensors, etc. The prototype developed is however
somewhat crude, and does not address issues around packaging
and mounting. Further, the sensor device developed requires
communication with a WSN node that runs heavy-duty soft-
ware running a multi-threaded operating system called RE-
TOS. Experimental testing was done with tobacco smoke, and
no road-tests were conducted. Another relevant work is [14]
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that proposes methods to reduce communication overheads
from sensor nodes when a large number are deployed in a
city. While they do develop some ZigBee-based hardware, it
is rather clunky (with CO2 sensor outside car and GPS/GSM
modules inside the car) and likely to be expensive since they
do not leverage mobile phone capabilities. Further, much of
their evaluation is predominantly simulation based rather than
via experimentation.

A mobile measurement system was also developed in [3].
A mobile measurement unit was developed and tested in
Bologna, Italy, and models such as Voronoi diagrams and
ordinary kriging variograms were used to that estimate air
pollution distribution. In [10] a tool is developed and trialled
in Barcelona, Spain, for estimating personal exposure for
mobile individuals with varying levels of activity. This is very
much aligned with our objectives; however, they derive their
pollution estimates from a model, the Atmospheric Dispersion
Modeling System (ADSM), developed from a previous year,
and their estimates are hence neither real-time nor accurate.

III. DATA COLLECTION ARCHITECTURE

The data collection architecture in the HazeWatch project
is based upon the idea of “crowd-sourcing” or “participatory
sensing”. Users collect and contribute air pollution data ob-
tained from personal sensing units, and the greater spatial
density of data thus collected from many users in turn gives
each user more accurate estimates of their pollution exposure.
Our overall system architecture is shown in Fig. 1, and consists
of (1) portable sensor units attached to cars that monitor air
pollution as users drive, (2) an application on the driver’s
mobile phone that harvests the data from the sensor unit, tags it
with location and time information, and uploads it in real-time
to our server, (3) the cloud-based server that stores the data,
and applies interpolation models to generate spatio-temporal
estimates, and (4) visualisation tools that map pollution levels
and personalize the information for the individual user. The
first two steps constitute data collection (described in this
section), while the latter two steps comprise data consumption
(discussed in the next section).

A. Pollution Measurement Node

Arguably the most critical and challenging component of
the architecture is the device that enables users to measure
air pollution. There are several options here, and a careful
selection is needed in order to maximize chances of mass
adoption. The challenges are briefly summarised below:

Portability: On the one extreme, the device can be bulky,
as the one used by the government monitoring stations –
however this condemns it to be fixed at a location, reducing
spatial coverage. On the other extreme, the device can be
made portable enough for a user to carry on their person,
as intended in [15], [11] – however we believe that getting
users to consistently carry a device, even if it is as small as
a mobile phone, is very challenging. An alternative solution,
which we feel is more viable, is to fit a portable device on
the user vehicle. This frees the user from having to carry it

on their person, enables large spatial coverage as the user
drives, and captures pollution near a significant source, namely
motor vehicles on the road. Note that obtaining pollution
measurements solely on and near roads will bias the sampling
towards high-concentration areas; in order to temper this effect
we also harvest the readings reported hourly in the Office
of Environment web-page [22], which include sites that are
situated away from roadways.

Complexity: Having decided to make our devices suitable
for vehicle-mounting, the next major decision we confronted
was regarding target cost and complexity of the device. In
order to operate autonomously, the device needs to have
pollution sensors, a GPS module to time- and location-stamp
the measurements, and a 3G module to upload data in real-
time. Indeed such a design was used for projects such as [27]
and [1], and is suitable for mounting on public vehicles such as
buses. However, our target users are consumers driving private
cars, and in order to keep costs low, we chose a minimalist
design that does not have GPS or 3G capability. Instead, in our
design the unit communicates via BlueTooth with the user’s
smart phone, which is assumed to be equipped with GPS for
time and location tagging the pollution measurements, and
with 3G capability for uploading in real-time to our server.
This offloading of capability to the mobile phone allows us to
keep the unit cost low for the consumer market.

Sensor Type: The sensor unit therefore consists broadly of
the (a) gas sensors, (b) micro-controller with built-in ADC to
digitize the sensor readings and package them into messages,
(c) BlueTooth module to transmit the readings to the user’s
mobile phone, and (d) battery power supply. The choice of
gas sensors presented different trade-offs. For typical pollutant
gases such as carbon monoxide (CO) and nitrogen dioxide
(NO2), our first version of the unit, shown in Fig. 2(a), used
Metal Oxide (MO) Sensors. These operate on the principle
that when a semiconductor material is heated and when a
gaseous pollutant is introduced into the chamber, electrons are
freed from the semiconductor, which decreases its effective
resistance proportional to the level of pollution. MO sensors
are compact and cheap (as low as $5 each), but have low
accuracy and are non-linear. The use of MO sensors allowed us
to built our unit housing three sensors (CO, NO2 and O3) at a
cost price close to $50 (refer to [6] for a detailed description of
the hardware design), but posed many performance problems
related to non-linearity and influence of temperature and
pressure. We therefore designed a second version of our unit
(detailed in [17]), shown in Fig. 2(b), using electrochemical
(EC) sensors. These operate by passing the pollutant gas
through the inner membrane of a gas chamber where it is
oxidised, producing an electric current proportional to the
level of concentration. EC sensors are sensitive, accurate, and
linear, but expensive ($50-100 each) and require more complex
circuitry. We therefore designed our unit to house only one
sensor at a time (the figure shows the CO unit), at an overall
cost of about $150.

Calibration: Once built, we needed to calibrate each
unit, which entails converting the current measurements into
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(a) Metal Oxide Sensor (b) Electrochemical Sensor

Fig. 2. Sensor unit using (a) Metal Oxide Sensor and (b) Electrochemical Sensor

(a) Commercial Monitor (b) Calibration Chamber (c) Mounting on car

Fig. 3. (a) Commerical monitor used for calibration, (b) the calibration chamber setup, and (c) Mounting our unit on the car

pollutant concentrations. This requires us to determine, at
each known concentration of the gas, the reading output
by our unit. This posed a major challenge for us since we
did not have facilities for controlled experimentation with
known concentrations of the gas. To this end we procured a
commercial monitor called the GasAlert Micro 5 built by BW
Technologies, as shown in Fig. 3(a), that could tell us the true
pollutant concentrations. We then had custom-built an air-tight
container, as shown in Fig. 3(b), into which we put our unit
(to be calibrated) along with the commercial monitor. Since
we did not have a license to operate toxic gas cylinders, we
had to resort to crude measures to obtain the pollutant gases.
For CO we simply captured car exhaust fumes and dumped
them inside the chamber, while for NO2 we used added copper
shavings to a beaker nitric acid inside the chamber that causes
a chemical reaction in which the gas is released. Repeated
experiments yielded varying concentrations of the pollutant
gas, as indicated by the commercial monitor, and noting down
the corresponding current from our unit allowed us to plot the
current versus concentration curve for each unit, yielding the
calibration coefficients. In spite of the relatively crude nature
of our calibration, the curves we got for the electrochemical
sensors were remarkably linear, giving us confidence in the
calibration. These were further validated via field tests as

described later. We refer the reader to our report [19] that
outlines our calibration procedure and outcomes in great detail.

Mounting: Lastly, the mounting of the device on the car
posed another challenge. Aspects of mounting position such
as near or far to the exhaust, into or across the wind, high or
low from the road, are significant. We chose to mount the unit
on top of the car, as shown in Fig. 3(c), so it is not directly
in line with the exhaust fumes. Our mounting is across the
wind, rather than into it, so that wind does not directly blow
in via the vent holes (on the side of the unit) that can cause
large changes in air pressure. Further, the casing on our unit
prevents the sensor from being directly exposed to the sun or
rain.

B. Mobile App for Data Upload

The sensor unit tethers with the user’s mobile phone via
BlueTooth. As explained earlier, we rely on GPS and 3G
capability in the phone, rather than replicating these function-
alities on the sensor unit. As of 2011, 46% of all Australians
are estimated to own a smart-phone, and this number is
rising rapidly, so we do not expect this requirement to be
onerous on the user. We developed an app for Android-based
phones to interact with the sensor unit over BlueTooth (the
reason we could not do so for iPhones is that the APIs for
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Fig. 4. App to Upload Pollution Data

Fig. 5. Server software architecture

BlueTooth access have not been made accessible by Apple to
Universities). A screenshot of the app interface is shown in
Fig. 4. Upon startup the app scans for bluetooth devices and
shows a list of sensor units that are within communication
range. Upon connecting to the appropriate unit (unit 103 in
this case), the app downloads the calibration constants for that
unit from our server (the calibration constants are not hard-
coded into the app so that drifts can be easily adjusted at the
server end without requiring any change to the code in the
app). Thereafter, the app then constantly displays information
to the user, such as current location, current pollutant values
reported by the unit, sensor battery level, trip time, number of
samples recorded in this trip, GPS sampling interval (the user
can adjust this to control battery drain on the phone), etc. Note
that our design requires minimal input from the user, who is
required only to start the app and connect to the sensor unit
at the commencement of each drive; all actions thereafter are
automatic. We did try to eliminate even this action on the
part of the user, by having the app run in the background and
periodically scan the BlueTooth interface for presence of the
sensor unit; however, this resulted in excessive battery drain,
causing us to abandon this approach.

C. Server Database

The last component of our data collection architecture is
the database server itself. This is the central repository, hosted
in our data center, to which all our data contributor users
(who carry our sensor unit device along with the Android app)
automatically upload data as they drive around. We also wrote
automated scripts on our server so it harvests data published
hourly by the state Department of Environment on pollution
levels at their fixed stations (around 12 in number) in and
around Sydney – these provide measurements at locations
away from roads, and reduce the sampling bias in our sys-
tem arising from measurements being taken in and around
roadways.

The architecture of our server software is depicted in Fig. 5,
and comprises three layers: the web-server layer, the model
layer, and the database layer. The database layer forms the
core of the system, by storing all readings and providing
a simple interface for extracting and filtering readings. We
use MySQL, chosen for its efficiency, reliability, and ease of
use when searching and filtering over large sets of data. The
model layer provides an abstraction of the data, whereby it
can return the air pollution level for any arbitrary point in
location and time, by employing an underlying interpolation
model (discussed in the next section) over the collected data.
This conceptually separates the production of data from its
consumption, allowing an application to be written without
constraints on the underlying data density or continuity. Note
that all interaction with the data occurs via the model, so that
a consistent interface is presented to any application seeking
to use the data. The web-server layer presents the data (via
the model) to the outside world, in the form of web-pages,
maps, and applications that access it via an API. A detailed
description of the server design and implementation can be
found in our report [29].

IV. DATA MODELING, VISUALIZATION, AND
PERSONALIZATION

In this section we describe how the data, once collected,
is consumed. We briefly describe the models we use to
interpolate the data, the web-based mapping to visualise the
pollution in real-time, and the personalized tools we have
developed to make the data meaningful to the user.

A. Interpolation Models

By using mass produced mobile units, we expect to measure
air pollution at much finer spatial granularity than available
from the government’s fixed monitoring stations today. Never-
theless, since no system can measure pollution over all points
in space and time, we need to employ models that can estimate
concentrations covering the full urban space under considera-
tion. The available methodological approaches to estimate the
spatial distribution of air pollution range from simple empirical
techniques such as interpolation [18], to various statistical
regression methods or data-driven models such as land use
regression [16], [25] and neural networks [4], to more complex
models including atmospheric chemistry and dispersion [26],
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Fig. 6. Architecture of the web application

Fig. 7. Contour map of CO concentration overlaid on Google maps

[24]. In most instances, progression from a simpler empirical
model to a more complex forecasting model entails increased
data requirements (other than direct measurements), more
specialised software, and a corresponding higher number of
sources of uncertainty. Our initial effort in this project has
been to use simple interpolation models, and we hope to refine
these in our subsequent work.

Even so, there are many different forms of interpolation
which process data differently. The speed and accuracy of
various techniques, as well as the variability and density of
the original dataset, must all be taken into account. Interpo-
lated data generally has greater reliability when sampled data
locations are densely and uniformly distributed; conversely
if data locations are clustered with large gaps between sites,
inaccurate estimates will be obtained. This holds true regard-
less of the method we choose. We must also be aware of
the fact that interpolation inherently underestimates the peaks
and overestimates the dips due to the nature of averaging.
We implemented two interpolation methods: inverse-distance
weighting, and ordinary kriging, as briefly described next.

Using inverse distance weighting (IDW) to estimate con-
centration at a point in space involves allocation of weights
to all neighbouring points, based on the distance between the
points. A point that is further away from the interpolation
point therefore has less significance than one closer. IDW can

be implemented easily and quickly, and is the default option
for our model. However, it can have high error rates when
points are sparsely distributed, and the contour maps thus
generated are not very smooth (known as bull’s eye effect).
We therefore also implemented ordinary kriging, which is
more complex but yields more robust results. Kriging involves
computing the empirical semivariogram over the data, which
is done by clustering pairs of data points into bins that
have similar distance, and plotting the semi-variance of each
bin as a function of the distance corresponding to the bin.
The interpolation weights are derived by solving a system
of linear equations relating the weights to the semi-variance
determined from the model variogram. An important benefit
of this technique is that it provides the ability to assess error
or uncertainty of the estimated point, and is a widely accepted
method in air quality studies. We also found that it presents a
much smoother and natural-looking contour plot in our maps.
However, the maps takes several seconds to render on our
web-page when this interpolation method is used. A detailed
discussion of the interpolation methods and its implementation
in this project can be found in our report [8].

B. Web Based Visualization

The web application consists of a client-side component and
a server-side component, separated by a network, as shown in
Fig. 6. As described earlier, the server (blue boxes) stores
the geo-referenced data in the MySQL database, runs the
interpolation models, generates a contour map for selected
datasets, and exposes query processing APIs to outside appli-
cations. The client side (shown in yellow boxes) runs a web-
based form input that allows users to enter position, time, and
other parameters, and pass those to the server. The pollution
contour map generated is overlaid on Google maps, chosen
for its ease-of-use, popularity, and well-documented API.
Our client implementation uses standard web technologies of
HTML, CSS and Javascript, and also leverages the power of
AJAX (asynchronous JavaScript and XML) with PHP server-
side scripting to deliver the maximum data modelling and
visualisation capabilities.

A sample screen-shot depicting a contour map of CO
concentration on the web-page is shown in Fig. 7. The panel
on the right allows the user to input data such as location
(latitude/longitude) and radius for the map, the date and time
of interest, the pollutant that needs to be mapped, the number
of measurement points, the interpolation model, and the time
window for which the map is created. The panel on the left
shows the contour map, along with labels with the data points.
Hovering over a label opens a pop-up showing the details
of the data point such as date/time and value. The bottom
right on this panel also shows the minimum and maximum
values, along with the estimated value at any point where the
yellow marker is dropped. We note that the map shows the
pollution to be very low towards the west of Sydney, generated
from government data, whereas the CO concentration is much
higher in and around the city, based on readings obtained from
our mobile sensor.
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(a) Inverse Distance Weighting (b) Ordinary Kriging

Fig. 8. Contour map over same data points obtained from (a) Inverse Distance Weighting interpolation, and (b) Ordinary Kriging interpolation

Fig. 9. iPhone app showing personal exposure to CO over a trip

To contrast the results we obtain from the two interpolation
models, the corresponding maps, obtained from identical data
on CO measurements, are shown in Fig. 8. The inverse
distance weighting (IDW) contour map in Fig. 8(a) shows the
bulls eye effect whereby high pollution is tightly concentrated
in the city CBD, whereas the ordinary kriging contour map
in Fig. 8(b) shows the CO pollution spreading around the
harbour, with the air getting cleaner as one moves west. While
the relative performance of these models depends on data
density and distribution, we found that kriging usually present
a smoother gradient and better aesthetics than inverse distance
weighting.

C. Mobile App for Health Impact

We believe that though a relatively small of users in an
area may carry our sensor units and contribute pollution data,
everyone (including people who do not have a unit) should

benefit from the data, and be empowered with personal tools
to estimate and manage their pollution exposure. To this end
we developed an iPhone application that tracks the user, and
computes their exposure a posteriori based on their location
trace. Our app allows the user to start and stop tracking
their route, which get recorded as a trip. The user can see
a list of their trips, and for each trip, compute the average
exposure to each pollution. The trip can also be seen overlaid
on a map, and the pollution exposure can be seen as a
graph. For example, in Fig. 9 we show a screen-shot of the
pollution graph, showing how the exposure to CO varied
over time as the user was driving in a large loop around
Sydney from approximately 1:30pm to 3:30pm on a work-
day. The graph also shows the user, via a red line, how their
exposure compares with the long-term value deemed safe by
the WHO. We are currently working on enhancing the app to
provide prospective route mapping, namely to guide users on
alternative driving paths that have lower pollution exposure.
One can see that a mobile app like the one we are developing
can not only help users who do not carry a sensing unit, but
also personalize the data and make it more relevant to them.

V. FIELD TRIALS AND DEPLOYMENT CHALLENGES

We briefly outline our field trial experiences and outline
challenges for successful large-scale deployment.

A. Field Trials

We did tens of field trials with our system, in which we
drove around Sydney with our sensor units collecting pollution
data much the same way people would on their regular com-
mutes. We highlight two specific trials, the first validating the
correctness of our unit, and the second validating the goodness
of our app that estimates personal exposure. In our first trial
both the commercial monitor as well as our sensor unit were
mounted on the car, and the CO measurements from both were
recorded – these are shown in Fig. 10(a) as the blue and orange
curves respectively. Two immediate observations can be made
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(a) Field Trial 1 (b) Field Trial 2

Fig. 10. (a) Field trial 1: validating our sensor unit, and (a) Field trial 2: validating our personalized estimation app

– first, that the pollution on Sydney roads shows significant
spatial variation, with pollution peaking in tunnels, often
reaching dangerously high levels, as shown by annotations in
the figure. The second observation is that the measurements
from our unit closely follow the commercial meter, validating
that our construction, calibration, and software are working
correctly, giving us reasonable confidence that our measure-
ments are correct. Another observation that emerges from this
plot is that the green curve, which corresponds to the readings
obtained from the nearest government monitoring stations,
indicate a very low level of pollution (often below 1 ppm).
This large discrepancy illustrates the need for finer grained
monitoring, as envisaged by our system.

The second field trial we illustrate in Fig. 10(b) corresponds
to multiple drivers who carry our sensor units and contribute
data, while the subject user does not have a unit, and merely
uses their iPhone app. The objective is to see if the pollution
exposure for this subject user can be estimated from the data
contributed by other users. The figure shows that the estimated
values (orange curve) corroborate to some extent (though
not very accurately) with the true exposure recorded by the
commercial meter (blue curve). We believe this fit can improve
significantly with deployment density, and we hope to achieve
this as we construct more units that can be given out to people
who are keen to contribute pollution data. The inaccuracy
of our estimates not withstanding, it is worthwhile to note
that the exposure estimated from the government data (green
curve obtained from data from the department of Environment
Climate Change and Water or DECCW) is close to zero and
hardly representative of pollution individuals are exposed to
on Sydney’s roads.

B. Deployment Challenges

Our experience with building and trialling the system
over the past 2-3 years has taught us that the highly inter-
disciplinary nature of this project makes it full of challenges
on many fronts. The most significant challenges have arisen
with the hardware: (a) the metal oxide sensors are cheap
but non-linear and unreliable, while the electrochemical are
expensive and extremely sensitive, operating at nano-amps,

requiring very careful circuitry, particularly for stabilisation
of the sensor, (b) the calibration of the sensor units has been
challenging, given that we do not have proper facilities and
certification to store and handle toxic gases, (c) the packaging
of the unit, and mounting it on the car has also presented
difficulties, and we have in fact lost two units that dropped
off and got smashed on the road, and (d) mass production of
these units also requires careful consideration, bearing in mind
cost, aesthetics, battery life, etc., that we have not currently
optimized for. Some of the other challenges we have faced
in this project include finding the right user base to target
it to, ranging from bicyclist groups and asthma sufferers to
transportation operators and members of the general public.
Getting a dedicated user-base of data contributors is non-trivial
but necessary if the system is to become useful to the general
public at large.

VI. CONCLUSIONS

In this paper we have described our efforts over the past
2-3 years in building and deploying a low-cost participatory
system for urban air pollution monitoring in Sydney. The aims
of the project are noble, to get a better understanding of urban
air pollution and to empower citizens with information about
their personal exposure, and what steps they can take (e.g.
route planning) to better manage their air pollution exposure.
In spite of no funding for this project, the collective efforts
of over a dozen students over this period have enabled us
to build a working system, including hardware units, server
database software, and mobile apps. We have demonstrated
that the system, though fraught with challenges, is realizable,
and can be applied world-over, particularly in pollution-heavy
countries, to better understand urban air pollution and its
health impacts. The economic model underlying large-scale
deployment is yet to be validated (crowd-funding may provide
a partial answer), but the potential of a low-cost crowd-sourced
pollution monitoring system has been demonstrated, and might
provide a more viable alternative to waiting for governments
of the world to act on this important but ignored problem.
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