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Abstract—This work offers in-depth analysis of three different
darknet datasets captured in 2004, 2006 and 2008 to provide
insights into the nature of backscatter traffic. Moreover, we ana-
lyzed these datasets using two well-known open source intrusion
detection systems (IDSs), namely Snort and Bro. Our analysis
shows that there are interesting trends in these datasets that help
us to understand backscatter traffic over a 4-year period of time.
However, it also shows that it is challenging to identify the attacks
that generated this traffic.

Keywords—Backscatter, DDoS, Darknet, Network measure-
ments, Network Security

I. INTRODUCTION

Denial of Service (DoS) and Distributed Denial of Service
(DDoS) are well known network attacks that aim to prevent
users to access a system. For example, most recently, Reuters
reported that undefined sources generated DoS attacks to the
communication channels of the National Security and Defence
Council of Ukraine, in March 2014 [1]. Also, One of the
popular online role-playing games, Wurm, was taken offline
because of a DDoS attack in February 2014 [2]. Given these
malicious activities, network measurement and monitoring are
important tools to ensure the understanding of attack trends.
To this end, network telescopes (darknets) are used for data
collection and traffic measurements by many security analysts.

A darknet is a network that consists of IP addresses and
ports where there is no network device set up to send/receive
data. Darknets allow one to observe different large-scale
events taking place on the Internet. Their goal is to observe
the traffic targeting the unused (dark) address-space of the
network. Since all traffic to these addresses is suspicious,
one can gain information about possible network attacks as
well as misconfigurations by observing it. The resolution
of the darknet depends on the number of dark addresses it
monitors. For example, a large one that monitors traffic to
16,777,216 addresses (a /8 network), has a higher probability
of observing a relatively small event than a smaller darknet
(telescope) that monitors 65,536 addresses (a /16 network). In
general, there are two categories of darknets depending on their
configurations: Passive and Active. A passive darknet records
all the packets received by at least one of the unallocated IP
addresses in the range of the darknet. On the other hand, active
darknets do not only record these packets but also respond to
them in order to collect more information about the attacker
and/or the attack process.

In this research, we analyze publicly available darknet traf-
fic data from CAIDA traffic archives [9]. Even though CAIDA

does not provide much information about these datasets, it
states that they are mostly backscatter traffic. Backscatter
traffic is a side effect of spoofed DoS/DDoS attacks. In this
kind of DoS attack, the attacker spoofs the source address
of the network packets sent to the victim. In general, the
victim responds to these spoofed packets as if they were
normal. The traffic generated by these responses is called the
backscatter traffic. In this work, we employed the backscatter
traffic data from years 2004, 2006 and 2008 to be able to
perform traffic measurements and analysis. We also assume
that these datasets represent the traffic from passive darknets.
according to CAIDAs explanations in [9]. It should be noted
here that these were the only and latest available backscatter
datasets including solely one-way traffic when we started this
research. these were the only and latest available backscatter
datasets including solely one-way traffic when we started this
research. Given these properties about the datasets, our aim is
to shed light into the following issues:

1) What is the nature of darknet traffic including mostly
backscatter attacks?

2) Are there any well known encrypted ports in this
traffic? If so, do they have special roles?

3) Are there any well-known P2P (Peer-to-Peer) applica-
tions in this traffic? If so, do they have special roles?

4) What are the geo-locations of the source IP addresses
seen in these backscatter traffic?

5) Can the current intrusion detection systems identify
the different attack behaviours in this traffic? If so,
what do they identify?

To achieve our aim, we begin with analyzing the main
characteristics of the darknet traffic by measuring packet
distributions, protocol distributions and protocol types in order
to understand its nature. To this end, we analyze the encrypted
ports such as SSL and P2P applications such as BitTorrent
to understand how much they are used in these backscatter
(darknet) datasets. In addition, we analyze the geo-location of
the source IP addresses to find the countries producing most of
the backscatter traffic. Finally, we employ two different open
source IDSs, Snort [22] and Bro [23], and also a one-way
traffic analyzer, Iatmon [25], to study the malicious behaviours
these tools would identify when they are run on a real darknet
dataset.

The rest of the paper is organized as follows. Section II
discusses the related work in this field. Section III discusses
the datasets, techniques and tools employed in our analysis.
Section IV presents our experimental results. Finally, Section
V draws conclusions and discusses the future work.
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II. RELATED WORK

There are many studies related to the installation of a
darknet platform and analysis of the collected darknet data.
Bailey et al. focused darknet configuration techniques, such as
activeness or passiveness, and analyzed a large darknet dataset
collected via Internet Motion Sensor (IMS) by clustering the
data based on unique source IP addresses [3]. Eto et al.
introduced a network analysis center for tactical emergency
response that aims to monitor various types of darknets, such
as /8, /16 and /24 of network addresses. They analyze network
attacks by measuring the correlation between the network
threats seen in the darknet and malwares captured by various
honeypots [4]. Moore et al. analyzed the worldwide DDoS
activity by using 22 different backscatter datasets captured
between 2001 and 2004 [6]. Wang et al. focused on describing
the nature of the Internet worms and employed statistical tech-
niques to measure host infection times and reconstruct worm
infection sequences [5]. They experimentally confirmed their
analytical results on a worm dataset provided by CAIDA via /8
network telescopes. Pang et al. studied the characterization of
both the passive and the active darknet data, collected in 2004
from /8 and /19 iSink [7] darknets as well as /24 Lawrence
Berkeley National Laboratory (LBL) darknets. They employed
a number of statistical measurements including the nature
of data, most used application-level responders and filtering
process by source-connection, source-payload, source-port and
source-destination [13]. Wustrow et al. reengineered Pang et
al.s research [13] without using any filtering to highlight how
the network traffic activity has been evolved in the recent
years [33]. They explored the characteristics of their datasets
by measuring the protocol/port selections, traffic types, sizes
etc., and revealed the critical environmental changes of the
background radiation such as misconfiguration and location
over the unused /8 network blocks. Last but not the least,
Fachkha et al. used datasets collected from many /16 address
blocks to analyze the nature of the darknet packets, mostly
using network, transport and application layer protocols [12].
They also described 30 types of threats observed in their
dataset, and studies the relationships between the threats using
association rule mining.

Aforementioned studies mostly discuss the importance of
configuring and monitoring unused address blocks and ana-
lyzing the packets captured in the monitored IP addresses to
identify network threats and their characteristics. Commonly,
these studies include both analytical and statistical analysis to
describe the nature of the datasets used and study any trends
indicating the observed threats. Filtering by transport layer
protocols, source and destination IP addresses, port numbers
and specific time periods are the most favoured techniques
implemented during these studies. In general, the datasets used
consisted of darknet and network telescope traffic.

Our research is complementary to these studies in terms
of providing measurements of darknet data and DDoS attack
behaviors. The main difference between the existing researches
and our research is that we focus on three different datasets
consisting of mostly backscatter data over a 4-year period.
This work mainly contributes in the following two aspects:
i) We shed light into the backscatter (DDoS) behaviours and
how they change (if at all) over time. ii) We analyze the
performances of Snort v2.9.1 as well as v2.9.6.1, Bro v2.2 and

Iatmon v2.1.2 to observe how successful they are in detecting
backscatter traffic.

III. METHODOLOGY

In this work, three different publicly available backscatter
datasets are used from CAIDA archieves. These traffic files
were captured by UCSD Network Telescope [9] also known
as a passive darknet at San Diego in 2004, 2006 and 2008 [8].
These darknet backscatter datasets only involve one-way DDoS
attack traffic, incoming packets to the darknet. Since UCSD
network telescope is a passive darknet, it does not respond to
the incoming traffic, so there is no outgoing traffic included
in our datasets. Additionally, the destination IP addresses are
hidden by assigning their first octets to 0. The earliest day of
traffic from each dataset, namely May 28 from 2004, Feb 23
from 2006 and Feb 22 from 2008, are selected for our analysis.
In doing so, we aim to study how the behaviour of such attacks
vary (if at all) over the two-year intervals. Furthermore, since
the knowledge database provided by these NIDSs achieve their
highest performance on two-way traffic, we also employed all
the November 2008 dataset by using only Iatmon to observe
how a special one-way traffic analyzer would measure on this
traffic. Table I presents the sizes of the datasets employed in
this research.

TABLE I: Sizes of the datasets Employed

Sizes
Dataset Number of Packets Size (GB)
May 28, 2004 57,641,141 4.4
Feb 23, 2006 85,547,065 7.5
Feb 22, 2008 81,606,489 6.9
November, 2008 1,317,888,867 102.7

After obtaining these samples, we first analyzed the per-
centages of scanning, backscatter and misconfiguration traffic
in our datasets. Then, we performed measurements on the
network, the transport and the application layers of the data
obtained to understand the most used ports and protocols,
in other words applications. We also analyzed the usage of
well known secure ports, as well as P2P application ports
to study how much these ports and applications were used
in generating backscatter traffic. Moreover, we studied which
countries were generating these backscatter traffic. Finally, we
evaluated the performance of the network intrusion detection
systems, namely Snort v2.9.1 as well as v2.9.6.0, Bro IDS v2.2
and Iatmon v2.1.2 on these darknet datasets to understand how
much of the open source IDSs able to detect such attacks.

To the best of our knowledge, this is the first work
analyzing aforementioned backscatter datasets by using these
techniques. In only order to analyze and measure the trends
existing in these datasets, we employ open source tools such as
Wireshark [19] and Tshark [20]. Wireshark is an open source
network protocol analyzer with a graphical user interface
(GUI) that is used for capturing, filtering and analyzing live
or previously captured traffic (data) formatted in tcpdump
or libpcap. Tshark is also an open source network protocol
analyzer without a GUI, but it supports using scripts. In
addition, GeoLite Country [21] database is used for detecting
geo-locations of the attack sources. Using publicly available
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datasets and open source tools, from protocol analysis to
intrusion detection for our measurements, ensures that our
research can be easily validated and compared against others
in the field.

IV. EVALUATION

In this section, we discuss the analysis of our dataset
measurements.

A. Measurements on Different Types of Traffic

In general, darknet datasets are categorized into three broad
classes: Scanning, Backscatter and Misconfiguration. Scanning
data represents the traffic generated by the DDoS attacks to
discover the vulnerable targets. Backscatter data represents the
background noise traffic resulting from these DDoS attacks
using many spoofed IP addresses. Misconfiguration data repre-
sents the traffic generated by any software or hardware errors
as well as user faults. So we also categorized the traffic in
our datasets into these three classes based on their TCP flags
using a similar technique as in [33] and [6]. In these datasets,
SYN packets are categorized as scanning traffic. RST, ACK,
SYN + ACK, and RST + ACK packets are categorized as
backscatter traffic. Then, the remaining packets are categorized
as misconfiguration traffic. Table II shows the percentages of
the packets per category for each selected dataset. The main
purpose of Table II is to show the different categories of
traffic of the datasets employed. Indeed, most of the packets
belong to the backscatter category as expected. 28th May
2004 dataset has the most backscatter attack packets and 23rd
February 2006 dataset has the most scanning (TCP SYN) and
misconfiguration packets.

TABLE II: Types of Traffic Observed in Each Dataset

Network Traffic Category
Dataset Scanning Backscatter Misconfiguration
May 28, 2004 0.01% 90.54% 9.45%
Feb 23, 2006 0.2% 78.1% 21.7%
Feb 22, 2008 0.1% 88% 11.9%

To study the nature of the backscatter traffic in more detail,
we categorized the backscatter traffic based on the TCP flags
of the packets. Table III shows the overall measurement of the
TCP flags used. It is clear that even though SYN+ACK packets
were less in 2004, they increased for the years 2006 and
2008, as opposed to the decrease of the RST and RST|ACK
packets. As it is well known, the SYN, SYN+ACK and
ACK packets are used in TCP connections for three-way
handshaking. Furthermore, the RST packets are used by the
hosts that do not receive any SYN+ACK packets over a long
period of time for any packet they send. Therefore, the total
number of RST packets decreases when the total number of
SYN+ACK packets increases. In these datasets, the increase
in the number of SYN+ACK packets and the remaining the
low percentage in the number of ACK packets is an important
indicator for the increase of the total number of incomplete
three-way handshake connections. This indicates an increase
in the number of DDoS attacks in 2008 and 2006 compared to
2004. It should be noted here that, there were DDoS attacks
directed to Wikileaks [29] and to some on-line gaming web

sites [30] in February 2008. There were also DDoS attacks
targeting many prominent blogs [31] and payment gateways
[32] in February 2006. On the other hand, in May 2004 the
number of known DDoS attacks are relatively lower compared
to 2006 and 2008 datasets, Table III.

TABLE III: Backscatter TCP Traffic Distributions

TCP Flag Type
Dataset SYN+ACK RST RST+ACK ACK
May 28, 2004 21.48% 35.8% 42.7% 0.02%
Feb 23, 2006 82.5% 2.4% 15.1% 0%
Feb 22, 2008 77.1% 6.1% 16.8% 0%

B. Measurements on Different Protocols

To identify the importance of the transport and network
layer protocols commonly used in the datasets analyzed, the
percentages of TCP, UDP and ICMP traffic are measured and
shown in Table IV. As seen in Table IV, the major protocol
seen in these datasets is TCP. The main reason why TCP
is the most likely to be observed is the usage of three-way
handshaking with a spoofed IP address is one of the most
common ways to perform DDoS attacks, i.e. backscatter traffic.
Moreover, there are many attacks both using and targeting TCP
ports as presented in [13]. As the TCP traffic decreases (Table
IV), also the backscatter traffic decreases (Table II), however
the misconfiguration traffic increases (Table II).

TABLE IV: Protocol Measurements

Dataset

Protocol

TCP
ICMP

OtherType-11 Other
TCP UDP Only ICMP

May 28, 2004 98.4% 1.1% 0.3% 0.12% 0.08%
Feb 23, 2006 88.22% 2.2% 15% 0.63% 0.05%
Feb 22, 2008 87.9% 6% 6% 0% 0.01%

It should be noted here that there is no UDP packets in
any of these datasets. However, there are some type-11 ICMP
packets. This represents the packets that have zero as their
TTL values. In this case, the first 64 bits of these packets are
kept, so their transport layer protocol can still be identified as
UDP. Table IV shows the percentages of these type-11 ICMP
packets. It is seen that the number of type-11 ICMP packets
were the lowest in 2004 and the highest in 2006. Even though
2008 dataset is a close second, coming right after 2006, the
nature of the type-11 ICMP packets in 2006 are much different
than the ones in 2008. In 2008, 12% of the whole dataset is
type-11 ICMP packets. Moreover, half of these packets have
UDP as their transport layer protocol whereas the other half
has TCP. However, in 2006, approximately 10 million (15% of
the whole dataset and the 88% of the type-11 ICMP packets)
of these packets have UDP as their transport layer protocol.
Note that as the number of these UDP packets increases, the
percentage of the backscatter traffic decreases. According to
Table IV, while the percentage of the UDP packets in 2008
is less than 2006, it is more than 2004. Depending on Table
II, backscatter traffic in 2006 is the least, then comes 2008
and after which comes 2004. Finally, the total number of the
packets that belong to other protocols, i.e. ”others”, is less than
one million for each dataset analyzed in this work.
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C. Application Layer (AL) Protocol Measurements

To identify the AL protocols that are used the most in these
datasets, we analyzed the port numbers of the packets, since
we do not have access to the payload in these traffic datasets.
Given that more than 50% of the packets have port 80 as
their destination port, this seems to suggest that they were sent
over the HTTP protocol. There is no other major application
protocol to emphasize for the 2004 dataset. However, the
application layer protocols that are used the most in the 2006
and 2008 datasets show different trends. Figure 1 presents the
measurements of the application ports in these datasets.

Fig. 1: Application Layer Protocol Usage for the datasets
2006 and 2008.

According to our measurements, the HTTP protocol is
again the most used AL protocol in 2006 and 2008 (more
than 50% of the packets in total). However, besides the HTTP
protocol, the following AL protocols are also used in these
datasets: pxc-spvr, nterm, telnet, csd-monitor, IRC, dcerpc,
FTP, Microsoft AD, SMTP, NETBIOS and DNS.

In this context, Nterm, which refers ′remote login
network terminal′, is a terminal-based application allowing
the easy use of different applications, directories, URLs and
documents via port 1026 [11]. Csd-monitor, which uses port
3072, has been reported as a channel used by DDoS attacks
[10]. Therefore, this port generally is blocked by firewalls
or security programs to avoid such attacks. Dcerpc is a
client/server protocol used for running a software application
on a remote server over the port 135. Note that in August
2003, it was discovered that the W32.Blaster worm was using
this port [14]. This worm temporarily blocks the RPC (Remote
Procedure Call) service by using the ports 135, 69 and 4444.
This explains why we have observed this port a lot in these
datasets. Server Message Block (SMB) is used as an AL
protocol to handle shared accesses and data exchanges on
multiple threads. SMB uses port 445 to run on Microsoft AD, a
special database to manage large amounts of select operations.
Furthermore, ports 137/138/139 are used to run NETBIOS,
which allows executing applications on different computers
over a LAN [14]. The other AL protocols observed in these
datasets in the top 10 AL list are well-known protocols in
the field. For example, Telnet is a command-based protocol
for remote connections via port 23. IRC is a text protocol
for chatting on ports 194 or 6667. FTP is a protocol used
for file transferring on ports 20 and 21. SMTP is a protocol
used for sending e-mails between IP networks on port 25,

Fig. 2: Encrypted Traffic Measurements

and finally, DNS is a protocol that converts IP addresses into
domain names (and vice versa) running on port 53.

D. Encrypted Traffic Measurements

Since we do not have the payload, we cannot be sure how
much of the traffic is encrypted in these datasets. However, we
measure the usage of the ports, such as port 443 that usually
carry encrypted traffic.To this end, we analyzed the datasets
to identify the packets which use one of the following 19
ports known to carry potential encrypted traffic [24][26][27].
Hereafter, we refer to these ports as secure ports.

Figure 2 shows the overall usage of these secure ports
for each dataset. According to these measurements, the total
percentage of potentially encrypted traffic (packets on a secure
port / all packets * 100) is less than 0.5% for each dataset.
However, within this small portion, SSH and SSL are the
most popular secure ports. SSL was mostly used in 2004
and SSH in 2006. This analysis implies that for most of the
DDoS (backscatter) attacks performed, the ports (applications)
employed are not known to be encrypted. Note that it is also
likely to observe encrypted traffic using other ports, e.g. Skype
on port 80. However, it is challenging to detect such traffic
[17].

E. Peer-to-peer (P2P) Traffic Measurements

P2P traffic has considerably grown over the last sev-
eral years. In a P2P network, none of the hosts needs to
be controlled by a centralized server. File sharing appli-
cations are the most popular usage area of the P2P sys-
tems. To investigate the P2P activities for our research,
10 popular P2P application protocols are analyzed. These
are: Edonkey[15], Gnutella (bearshare and limewire)[15],
KaZaA[15], DirectConnect[15], BitTorrent[15], WinMx[16],
Ares[16], Soulseek[16] and Waste[18]. Such P2P applications
might use different port numbers. However, we have measured
the usage of these AL protocols based on their default port
numbers.

Figure 3 provides the overall measurements for the P2P
application usage. According to these measurements, the total
percentage of P2P traffic is less than 0.05%. However within
this traffic, SoulSeek, BitTorrent and Edonkey are the most
popular P2P applications used by the DDoS attacks in 2004,
2006 and 2008, respectively. The usage of KaZaA, Waste and
Soulseek dramatically decreases year by year. It is interesting
to note that KaZaA was a popular file sharing application
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Fig. 3: Peer-to-peer Traffic Measurements

when it is first released. However, after 2006, it lost most
of its users since various clients were infected because of
the viruses KaZaA includes. Shin et al. [28] demonstrated
that more than 15% of the KaZaA data was including 40
different viruses between February and May 2006 and 12%
of the KaZaA users were infected. It is also mentioned that
approximately 7.2% of the victims could notify they were
infected. This is also reflected in our measurements, where the
highest usage of KaZaA is in 2004 dataset, the usage decreases
in 2006 and goes down to almost 0% in 2008. Moreover, the
first version of Bearshare was released in 2005, but it lost
its popularity quickly. Therefore, we observe a relatively high
usage of Bearshare in 2006, but not in 2004 or 2008.

In the used dataset, the direction of the one-way traffic is to
the hosts whose IP addresses were spoofed by an attacker from
the backscatter victims. Therefore, we know the IP addresses
of the victims, but not know the spoofed IP addresses for the
sake of their privacy.

F. Geo-location Analysis

Geo-location technologies are important for showing the
movement of darknet sources and generating stronger filters
to analyze illegal network traffic. To find the geographic
positions of the sources generating these backscatter traffic,
the geo-location of all the victim’s IP addresses who generates
backscatter traffic to the spoofed IPs have been identified.

Table V shows the source countries of such traffic with
the ratio of how much malicious traffic they produce in the
datasets analyzed in this work. For each dataset, China plays
the major role. Also, although Pakistan generates more than
10% of such traffic in 2004, its share dramatically decreases
in 2006 and 2008. Actually, the only countries where there
is increase in the percentage of generated DDoS traffic are
USA and Taiwan. However, note that in 2004 and in 2006,
these attacks were more distributed in terms of their sources
(over a larger number of countries) since the ”other” countries
contribute to almost 13% and 14% of the datasets, respectively.
However, this number drops to 2% in 2008. This seem to
suggest that the attack sources seem to be less distributed in
2008.

G. Measurements Performed Using IDSs

The main purpose of an IDS is to assist a network / security
analyst when the traffic analyzed is suspected to be an attack. A

TABLE V: Geo-location Measurements

Dataset
Country May 28, 2004 Feb 23, 2006 Feb 22, 2008
China 67.9% 49.4% 53.1%
Germany 0.3% 8.3% 2%
Korea 0.4% 2.1% 1.1%
Pakistan 11.2% 0.01% 0.03%
Taiwan 0.6% 0.5% 18.3%
USA 6.4% 25.8% 23.4%
Other 13.1% 13.9% 2.1%

signature-based IDS defines a packet as an attack if it matches
with a signature that is available in the database of the IDS.
We employed Snort [22] and Bro [23], two well known IDSs.
We also employ Iatmon on November-2008 backscatter dataset
and evaluate its performance by considering only the packets
classified under backscatter group. In this case, our goal is to
measure and analyze the performance of these systems on the
darknet datasets employed in this work. This would give us
a better understanding of how much of the attack behaviours
seen in these real life datasets can actually be identified with
these open source tools. For our research, we employed Snort
versions v2.9.1 and v2.9.6.0. We also employed Bro IDS v2.2
with the script ”scan.bro”. The reason we employed these
versions are two fold: (i) The earlier version of Snort (we
do not have access to an earlier version of Bro) enables us
to analyze the datasets employed with the rules (signatures)
known in the years when the datasets were captured, i.e. v2.9.1
is from 2005. On the other hand, (ii) the latest versions of
Snort and Bro enable us to analyze the datasets with the rules
(signatures) that are used currently, i.e. v2.9.6.0 for Snort is
from 2014, and v2.2 for Bro is from 2013. Finally, since the
employed dataset includes only one-way traffic, we employed
Iatmon v2.1.2, which is specifically developed to inspect one-
way network traffic, to measure and compare its performance
with the used NIDSs.

1) Signature (Rule) Categorizations: Bro, Snort and Iat-
mon tools have a number of various signatures (rules) to
identify malicious behaviours in the data. For example; for
Bro, we used ”scan.bro” script since there is not a specific
default script to detect DDoS attacks in Bro IDS. Instead
of defining specific rules for filtering, this script consists of
defining specific conditions (events) as listed below:

• When an unsuccessful connection attempt occurs

• When a TCP connection is rejected

• When an endpoint aborts a TCP connection

• Open connections when Bro is terminated

On the other hand, Snort IDS uses special filters on packets
to check if they are suspicious or not. Even though there is
not any specific attack category defined in Snort v2.9.1, nine
different attack categories have been defined in Snort v2.9.6.0.
According to those categories, we classified the rule sets and
analyzed the rules that are triggered on the datasets employed.
Table VI shows the name of the attack category, the number
of sub-categories, specific rules belonging to each category
and the number of the triggered rules on our datasets. ”# of
sub cat.” column refers to the number of the different rule
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sets under the related category. For instance, icmp.rules and
snmp.rules are such rule sets under the protocol category. ”#
of rules” column describes the total number of the rules for
each category. As an example, there are 529 different single
rules under protocol category defined in Snort v2.9.1. Finally,
”# of trig. rules” column represents the rules that are used
(triggered) by Snort when a packet is identified as suspicious,
i.e. malicious behaviour. Each rule that is used for at least one
of our datasets is counted under this measurement.

TABLE VI: Snort Rule Categorization

Category Snort v2.9.1 Snort v2.9.6.0
# of
sub
cat.

# of
rules

# of
trig.
rules

# of
sub
cat.

# of
rules

# of
trig.
rules

Browser - - - 6 2,875 0
File - - - 9 4,624 0
Indicator 8 294 4 6 2,814 0
Malware 1 82 - 4 3,835 0
Operating

System - - - 5 722 0

Policy 2 30 - 4 404 0
Protocol 13 529 20 15 1,136 13
PuA 1 18 - 4 876 0
Server 3 582 - 10 3,779 0
Web 7 1,070 - - - -
Other 9 506 7 6 1,173 7
Total 45 3,111 31 69 21,838 20

It is clearly seen that the number of total rules is ap-
proximately seven times more in Snort v2.9.6.0 than in Snort
v2.9.1. While there is no rule for the browser, file and operating
system categories in Snort v2.9.1, Snort v2.9.6.0 has 8221 rules
in total for those categories. Although the web category has
the most number of rules in Snort v2.9.1, they have all been
deleted in Snort v2.9.6.0. This is because the categorization
of rules have changed in the latest version of Snort. In this
case, the file category, with 4624 rules, has the most number
of rules in the new version of Snort. More importantly, even
though the number of total rules have increased, the number
of triggered rules were decreased by 11 in Snort v2.9.6.0. It
means, the version v2.9.6.0 is expected to have less success
rate in detecting the malicious behaviours. However, it is
important to underline that some rules might cause false alarms
based on the change on the signatures of network attacks in
time. This explains the reason behind the removal of such rules.
Table VII shows the triggered rules, the number of times the
rule was triggered, and also both the deleted and the newly
added effective rules by Snort v2.9.6.0. Note that the number
of ”triggered rules” refers to the detected attacks; in each time
a rule is triggered, it means it detects an attack packet.

According to these results, the rules in protocol-icmp rule
set are the most successful while monitoring a network for the
backscatter behaviour. ”Destination & Port Unreachable” and
”TTL Exceeded in Transit” rules detected more behaviours,
specifically backscatter behaviour than the other rules. In
addition, this analysis seems to suggest that the rule ”Hi Client
Unknown Method” is the only added rule by Snort v2.9.6.0
beneficial for analyzing such DDoS behaviours. Moreover, the
rule from Snort v2.9.1 -”Destination Unreachable Communi-
cation With Destination Host is Administratively Prohibited”-

which was effective to identify some of the malicious traffic,
seems no longer a part of the new version of Snort.

Furthermore, Brownlee [25] presented an open-source one-
way network traffic analyzer, Iatmon (Inter-Arrival Time Mon-
itor), that partitions the traffic into pre-defined subsets depend-
ing on their source types and inter-arrival-time (IAT) [34].
Iatmon is capable of providing a durable monitoring of unused
addresses as well as unsolicited traffic and ignoring traffic to
assigned hosts. There are 14 types and 10 different groups
have been defined as default configuration, which indicates
140 subsets. The types are defined based on the information
retrieved from the IP header of each packet such as protocol
and port number, while the group distribution is based on the
packet volume, lifetime, rate and time interval between the
successive packets. It is also noteworthy that Iatmon discards
the sources that are idle for 120 seconds or send no more than
two packets to detect backscatter attacks.

2) Performances of IDSs: To evaluate the performances of
Bro and Snort systems on our datasets, we run two experi-
ments: (i) on all the traffic of these datasets; and (ii) on just the
backscatter traffic of these datasets. It should be noted here that
the scanning data is low in these datasets, Table II. Table VIII
shows the performances of these IDSs for the aforementioned
experiments. Note that Snort does not analyze the packets
that have a secure port (see section 4.D) as their destination.
According to the results, the Snort rule set released in 2005
gives a better performance in terms of the number of malicious
packets detected. The latest Snort rule set is unsuccessful to
detect DDoS attacks, especially for the 2004 and 2006 datasets.
These results show Snort cannot identify the backscatter traffic
correctly. On the other hand, Bro can identify at most 15% of
the backscatter traffic with the minimum false positive error
rate.

Although the number of total rules dramatically increased
in the latest version of Snort, this new version is not as
successful as the older version in detecting malicious packets.
However, note that if the ”deleted.rules” section of the rules
set were in the new version, then the success rate would
be closer to the older version. Moreover, these results show
that most of the packets detected by Snort belong to the
misconfiguration category. On the other hand, Bro has a
better success rate than Snort in detecting backscatter packets.
However, the most interesting results is the fact that these well
known intrusion detection systems cannot detect the malicious
behaviour in these datasets from 2004 to 2008. What they
detect as malicious seems to be the misconfiguration traffic
most of the time, especially with Snort. In practice, these
would cause a high false alarm rate and indicate that most
of the defined rules are not actually symptom of attacks.

Iatmon detects 3.3% of the packets in November-2008
dataset as backscatter traffic. Moreover, 4.1% of all of the
source IP addresses are detected as suspicious sender. There
are two important reasons why the detection rate of Iatmon is
low: i) Iatmon ignores to analyze the sources which are idle
at least 120 seconds or does not send more than two packets.
ii) Iatmon detects backscatter traffic by only checking if the
values of ACK and RST flags of the inspected packet is 1,
or the time-to-live value of the inspected packet is exceeded.
However, in the employed datasets, one can see that attackers
also used other methods to create these attacks.
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TABLE VII: Snort Rule Specification

# of Triggered Times

Snort Rules May 28,
2004

Feb 23,
2006

Feb 22,
2008

Preprocessor.rules
Hi Server No Contlen 4 76 1
Excessive Overlap 137 698 139
Tiny Fragment 42 288 0
Short Fragmentation 576 6,763 0
Teardrop 232 71 361
Anomaly Overlap 452 956 144
Hi Client Unknown Method

(Added by v2.9.6.0) 804,825 1,306 11406

Anomaly Oversize 12 11 0
Bad Reset 254 88 21
Protocol-icmp.rules
Address Mask Request 8 0 0
Destination Unreachable
Fragmentation Needed

and DF bit was set
82 6,794 818

Destination Unreachable
Host Unreachable 54,269 1,336,068 420,929

Destination Unreachable
Network Unreachable 2,684 39,800 13,835

Destination Unreachable
Port Unreachable 5,141 9,343,279 3,146,756

Destination Unreachable
Protocol Unreachable 793 1,225 2,987

Echo Reply 28,649 29,386 44,677
Fragment Reassembly

Time Exceeded 217 2,681 867

TTL Exceeded in Transit 257,892 2,719,675 4,968,767
TimeStamp Reply 7 0 0
Protocol-snmp.rules
Request TCP 473 692 3334
Trap TCP 86 364 1275
AgentX/TCP request 26 476 425
Deleted.rules (not included

in Snort v2.9.6.0)
Redirect Host 23,375 169,817 102,122
Redirect Net 426 10,135 2,344
Source Quench 8,319 1,940 1,660

Destination Unreachable
Communication

Administratively Prohibited
217,046 1,027,602 703,227

Destination Unreachable
Communication with
Destination Host is

Administratively Prohibited

80 17,183 6,568

Destination Unreachable
Communication with

Destination Network is
Administratively Prohibited

51,186 8,682 938

Large ICMP Packet 0 3,663 0
TCP Port 0 Traffic 6,572 2,874 3,188
Same SRC/DST 2,734 1,321 631
IP Reserved Bit Set 1,200 337 23
Bad Frag Bits 207 81 0

In this section, we evaluate the performances of two well-
known NIDSs in terms of successful backscatter detection rate
by employing darknet datasets that include mostly backscatter
traffic. We do not state that Snort and Bro are insufficient

TABLE VIII: IDS Performance Analysis

Dataset Snort
v.2.9.6.0

Snort
v2.9.1

Bro
v2.2

Iatmon
v2.1.2

(only on
Nov-2008)

May, 28,
2004

O.B.R 0.01% 0.04% 0.23%

3.3%

A.R 2% 1.2% 2.1%
Feb 23,

2006
O.B.R 0.01% 0.01% 11.6%
A.R 15.8% 17.2% 15%

Feb 22,
2008

O.B.R 0.05% 0.01% 5.2%
A.R 10.6% 11.6% 5.5%

1O.B.R = Only Backscatter Records, A.R. = All Records

NIDSs, but demonstrate that they are quite inefficient to detect
these type of attacks. We also show that even a one-way
network traffic analyzer tool, Iatmon, cannot detect such attack
behaviour correctly. We think that these are important findings
since most of the botnet techniques make the use of backscatter
(DDoS) techniques when used for attacking.

V. CONCLUSION AND FUTURE WORK

In this paper, we focused on three different darknet
(backscatter) datasets from year 2004, 2006 and 2008 provided
by CAIDA. These datasets profile a general overview of the
backscatter traffic of the time they were captured. Thus, our
aim was to discover the trends/ patterns of backscatter traffic
and how it changes (if at all) over time. To achieve this, we
measure the different network and application level protocols
in this traffic as well as analyze from where they originate.
Moreover, to the best of our knowledge this is the first time
where two well known IDSs are used to evaluate such traffic to
understand whether any patterns can be discovered. Our results
show that the patterns of backscatter traffic are changing over
time. Furthermore, these IDS rules / signatures seem to be
insufficient to analyze backscatter traffic from one year to the
other. To this end, we presented and discussed the rule sets
used by these systems as well as the triggered rules in Snort
versions 2.9.1 and 2.9.6.0, and also Bro v2.2. As a summary
of our results over these datasets, we give the following list:

• TCP seems to be the major protocol for the transport
layer attack / backscatter traffic behaviour.

• HTTP (port 80) seems to be the major protocol for
the application layer.

• SSL (port 443) seems to be the most used secure port
in 2004 and 2008. However in 2006 SSH (port 22) is
used more.

• Soulseek, BitTorrent and eDonkey seem to be the
most popular P2P applications in 2004, 2006 and
2008, respectively.

• In these datasets, secure traffic is more than P2P
traffic. However, both of them are a small portion of
the overall traffic.

• It seems that the IP addresses from China and USA
play the major role of generating DDoS attacks in
these datasets.
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• Misconfiguration data seems to affect Snort IDS neg-
atively, causing high false alarm rates. On the other
hand, misconfiguration traffic seems to have less effect
on Bro IDS.

• Bro seems to identify the backscatter traffic better than
Snort and Iatmon. However, the accuracy is still low,
only 15%.

Our analysis also demonstrates that it is not completely
possible to predict the backscatter behaviours of a specific
year by evaluating the behaviours in the previous years. It
is interesting to discover that it is challenging to identify
backscatter traffic with the current intrusion detection systems
or one-way traffic analysis tools. Given that such traffic is the
first phase of botnet related malicious activities, this seems to
suggest that the current open source technologies are not able
to identify such behaviours.

It should be noted here that our findings regarding the fre-
quent usage of TCP packets for such attacks and the majority
of them generating from China support some of the results
obtained by the previous work in the field, too. However,
different from the previous work, we also demonstrate that:
i) The used port numbers for network attacks are changing
over the years. ii) It is even possible to use encrypted ports
to generate network attacks. iii) P2P applications are not used
for generating DDoS attacks. iv) Snort, Bro and Iatmon are
not reliable in detecting backscatter traffic. Note that Bro is
the most successful among the three (with the highest 15%
detection rate) while detecting only backscatter packets.

Future work will explore the performances of the com-
mercial off the shelf intrusion detection systems as well as
the network analyzers designed by CAIDA such as Corsaro
and Coralreef on such datasets. Furthermore, we will analyze
more recent and larger darknet and backscatter datasets as they
become available to explore whether they have similar patterns
as well. In addition, we will explore the use of machine
learning in order to analyze such traffic.
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