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Abstract—Future communications and data networks are ex-
pected to be largely cognitive self-organizing networks (CSON).
Such networks will have the essential property of cognitive self-
organization, which can be achieved using machine learning
techniques (e.g., deep learning). Despite the potential of these
techniques, these techniques in their current form are vulnerable
to adversarial attacks that can cause cascaded damages with
detrimental consequences for the whole network. In this paper,
we explore the effect of adversarial attacks on CSON. Our
experiments highlight the level of threat that CSON have to deal
with in order to meet the challenges of next-generation networks
and point out promising directions for future work.

I. INTRODUCTION

The idea that networks should learn to drive themselves is
gaining traction [11], taking inspiration from self-driving cars
where driving and related functionality do not require human
intervention. The networking community wants to build a
similar cognitive control in networks where networks are able
to configure, manage, and protect themselves by interacting
with the dynamic networking environment.We refer to such
networks as cognitive self-organizing networks CSON. The ex-
pected complexity and heterogeneity of CSON makes machine
learning (ML) a reasonable choice for realizing this ambitious
goal. Recently artificial intelligence (AI) based CSON have
attained a lot of attention in industry and academia.

In 2003, Clark et al. [8] proposed that ML and cognitive
techniques should be used for operating the network, this
knowledge plane incorporation will bring many advantages
in networks such as automation of network management,
efficient and real-time anomaly and intrusion detection and
many related tasks. Due to limited computational resources
and lack of ML abilities, the idea of knowledge plane was not
implemented in networks. In recent years, the field of ML,
especially “neural networks”, have evolved rapidly and we
have witnessed its success in vision, speech, and language
processing. This huge success motivated networking research
community to utilize deep ML tools for building CSON.

Deep ML or deep learning (DL) is a branch of ML
where hierarchical architectures of neural networks are used
for unsupervised feature learning and these learned features
are then used for classification and other related tasks. DL
classifiers are function approximators that require a lot of data
for generalization. Although they have outperformed all other
statistical approaches on large datasets, due to generalization

error, they are very vulnerable to adversarial examples. Adver-
sarial examples are carefully crafted perturbations in the input
which when ML/DL algorithms are subjected to get classified
in a different class with high probability.

In this paper, we take security to encompass the securing
of all of the functional areas of CSON (i.e., ISO defined func-
tional areas often abbreviated as FCAPS: fault, configuration,
accounting, performance, and security) and experiment with
multiple adversarial attacks on ML/DL based malware clas-
sification systems. Our experimental results demonstrate that
the current state of the art ML/DL based networking solutions
do not have substantial deterrence against adversarial attacks.
Specifically, our experiments utilize the highly cited malware
image dataset provided by Nataraj et al. [28] to perform
adversarial attacks on malware classifier to demonstrate that
using current ML/DL techniques in conjunction with CSONs
can be a potential security risk.

Contributions: In this paper, we have made the following
contributions:
• To the best of our knowledge, we have made the first

attempt to show that CSON utilizing ML/DL techniques
are very vulnerable to attacks based on adversarial per-
turbations.

• We have argued that existing defenses to overcome ad-
versarial perturbations are not appropriate and efficient
for CSON applications. We have also highlighted that
protection schemes against adversarial examples create
an arms race between adversaries.

The rest of the paper is organized as follow. In the next
section, we review related research studies that focus on
CSON and adversarial attacks on networking applications.
Section III describes our research methodology; particularly,
with reference to the dataset, the ML/DL model, used dataset,
and threat model assumptions, and the adversarial attacks.
In Section IV, we provide the details of our experimental
evaluations and the potential defense against these attacks. In
Section V, we discuss the posed questions as well as some
future directions and challenges. Finally, Section VI concludes
our study.

II. RELATED WORK

Many applications of ML/DL in networking have been
proposed in the last few years highlighting the applications,
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opportunities, and challenges of using ML/DL in networking
domain [2], [5], [6], [10], [15], [18], [33], [35], [39], [36].

Although many ML-based solutions for networking appli-
cations have been proposed, the networking community has
not yet standardized any ML-based solutions for CSONs. This
arises partly from the complexity of the CSON environment
that is characterized by dynamically changing network envi-
ronment, data sparsity, expected tussles between control loops,
high dimensionality, label data scarcity, heterogeneity, offline
data processing, and many other architectural issues.

CSON are expected to resolve the challenges of op-
timization, configuration, healing, and coordination in the
communication and data networks by incorporating AI/ML
based cognitive techniques. Latif et al. [21] highlights AI
as a potential enabler for CSON. Similar ideas based on
deep reinforcement learning for learning from environment
and experience termed as experience-driven networking are
presented in [37]. Feamster et al. [11] termed this idea of
learning from network environment for measuring, analyzing,
and configuring network without any human intervention as
self-driving networks. Jiang et al. [17] highlighted the ben-
efits and challenges in developing an intelligent data-driven
network with the ability of learning from dynamic nature of the
networking environment by using exploration and exploitation
processes. Koley et al. [19] proposed and provided a frame-
work for zero-touch networking and highlighted the need for
CSON using Google’s infrastructure network as an example.
Mestres et al. [26] revisited the possibilities of embedding
artificial intelligence in networking and proposed an ML/DL
based knowledge plane for networking applications and this
new networking paradigm was termed as knowledge defined
networking.

While ML/DL applications will be a core part of CSON,
recent studies demonstrated that ML/DL models are very
susceptible to adversarial examples [23] [1]. Although most
existing studies in this domain have targeted image classi-
fication applications in which high-dimensional images are
perturbed in a way that fools the algorithm without being the
change being conspicuous to naked human eye, these attacks
also pose a significant challenge to CSON since the underlying
algorithms are largely similar.

Such adversarial attacks are performed to compromise the
integrity in terms of misclassification, accuracy reduction,
targeted misclassification, or decision boundary evasion of the
ML/DL techniques. We can divide these adversarial attacks
into two broader categories based on the adversary’s/attacker’s
knowledge.
• White-box Attack: This attack assumes that the adver-

sary has complete knowledge about the ML/DL architec-
ture, training data, and hyper-parameters. For adversarial
attacks on CSON, we assume a white-box attack setting.

• Black-box Attack: This attack assumes that the ad-
versary/attacker has no information about the ML/DL
technique and hyper-parameters. The adversary acts as
a standard user who can query the ML/DL based system
and gets a response. These query-response pairs are later

used for crafting the adversarial examples.
Most of the adversarial attacks are white-box attacks, but

white-box adversarial examples can be converted into black-
box attacks by exploiting the ML/DL transferability property
[29].

Since these adversarial attacks on ML algorithms have not
yet been applied much in the case of networks, we will initially
review their applications in other domains. Szegedy et al.
[34] proposed the first successful adversarial attack that has
fooled the state of the art image classifiers with very high
probability. Goodfellow et al. [12] proposed an adversarial
sample generation method called fast gradient sign method,
where adversarial perturbation was generated by taking the
sign of the gradient of the cost function with respect to the
input. Kurakin et al. [20] explored the vulnerability of ML/DL
techniques in the physical world and demonstrated that a small
invisible tweak to the input of an ML/DL techniques can result
in incorrect results. Carlini et al. [7] proposed three attacks by
exploiting the three different distance matrices (L0, L2, and
L∞) and showed that the defensive distillation method [32]
used to prevent against adversarial attacks does not increase
the robustness of the ML/DL techniques. Papernot et al. [31]
proposed a saliency map based attack, where saliency map
is used to find the most discriminative features of the input
that are then fractionally perturbed to form an adversarial
attack on the ML/DL based classifiers. In 2017, Papernot et
al. [30] proposed a black-box attack, where adversarial attack
transferability [29] is exploited to form a successful evasion
attack. Further details about adversarial attacks on different
vision, language, and text processing systems can be found in
[38] and [1].

Adversarial attacks have not yet been explored for CSON,
we will cover some general networking applications. In 2013,
Corona et al. [9] highlighted the possibilities and open re-
search challenges of adversarial attacks on intrusion detection
systems. Hu et al. [16] proposed a generative adversarial
network (GAN) based black-box attack on malware examples
but training a GAN on malware examples is difficult and
computationally exhaustive. Grosse et al. [13] proposed an
adversarial perturbation attack against deep neural networks
for malware classification, where a restricted amount of feature
perturbations are used to fool a deep neural network with 0.85
probability which was previously classifying malware with
97% accuracy. In the next section, we provide the details of
the proposed approach to perform multiple adversarial attacks
on CSON.

III. METHODOLOGY

In this section, we describe the approach followed in
designing adversarial examples to evade the ML/DL based
malware classification system which we use as a proxy for
the functional areas of CSON. To the best of our knowledge,
no standardized deep learning based solution for malware
classification in the CSON has been proposed yet. In this
work, we propose a deep neural network based solution for
malware classification. Before delving deep into the details of



Fig. 1: Depiction of malware executable as an image

the proposed model, we describe the threat model and few
related assumptions.

A. Threat Model

In the following, we outline the salient assumptions regard-
ing the adversarial threat:
• The adversary may have the knowledge about the trained

model which includes model architecture and hyper-
parameters, but the adversary cannot make any changes to
the architecture or model parameters. This is a common
assumption in the adversarial machine learning domain
[1].

• The adversary can only perform attacks during the testing
phase, attacks on the training data (i.e., poisoning attacks)
are not within the scope of this study.

• For malware classification, we assume that similar fam-
ilies of malware, when represented as grayscale images
exhibit similar visual and texture representations. This
hypothesis was proposed and defended in [28]. In this
work, we utilize convolutional neural networks (CNN)
for malware classification because CNN is by far the best
feature extractors.

• The goal of an attack is to compromise the integrity
of the ML/DL based classification techniques through
a reduction in the classification accuracy with small
perturbations.

B. Malware Image Representation

In this paper, we have used grayscale malware image dataset
provided in [28], where a malware executable is converted
to a grayscale image. This approach of conversion includes
both static and dynamic code analysis. The executable code
is converted to binary and then represented as 8-bit unsigned
vectors, these 8-bit unsigned vectors are then reshaped to a 2D
array which can be visualized as a grayscale image. Figure 1
is depicting the procedure of converting malware executable
to a grayscale image.

C. Malware Classification Model

We propose a CNN based malware classification architec-
ture. Table I depicts the proposed architecture. CNN is a pow-
erful DL technique that learns spatial feature representations
using convolutional filters. CNN has the capability to tolerate
the distortion and spatial shifts in the input data and extract
features from raw input data. CNN provides the state-of-the-art
solution for network traffic feature extraction and classification
[24], motivated by these successes, we explore the use of CNN
for grayscale malware image classification.

In the proposed architecture, we re-scale the input grayscale
images of various sizes to 28 pixel wide and 28 pixel high,

where pixel values are between 0 to 255. These input values
are subjected to a two-dimensional convolutional layer with
64 filters of receptive field 14 pixel wide and 14 pixel high.
After that, we use a rectified linear unit (i.e., ReLU) as an
activation function. The resultant activation values are then
passed on to a second convolution layer with 128 filters and
5× 5 receptive field. Again, we use a ReLU as an activation
function. Similarly, the third convolution layer follows the
same procedure mentioned earlier but with 128 filters of
1 × 1 receptive field. After the third convolution layer, the
resultant activation values are flattened and passed on to a
fully connected layer with softmax as an activation function
producing resulting probabilities. We use a variant of the
stochastic gradient descent (SGD) as an optimization function
and categorical cross-entropy as a loss function to train the
CNN.

TABLE I: Proposed CNN architecture for malware classifica-
tion

Input: Malware gray scale image,
Size: (28*28)

2D Convolution Layer
(Filter Size: 14*14,
No. of filters: 64,

Activation Function: ReLU)
2D Convolution Layer

(Filter Size: 5*5,
No. of filters: 128,

Activation
Function: ReLU)

2D Convolution Layer
(Filter Size: 1*1,

No. of filters: 128,
Activation

Function: ReLU)
Dense Layer

(Number of neurons: 25,
Activation function: Softmax)

Output:
Malware

Classification Probabilities

D. Adversarial Attacks

We performed fast gradient sign method, basic iterative
method, and Jacobian-based saliency map attacks on mal-
ware classifiers to demonstrate that ML/DL based malware
classification methods in CSON are vulnerable to adversarial
examples.

1) Fast Gradient Sign Method: Goodfellow et al. [12]
proposed a fast method of generating adversarial examples,
this method is called the fast gradient sign method (FGSM).
This method exploits the vulnerability of deep neural networks
to adversarial perturbations. FGSM performs one step gradient
update along the sign of the gradient to solve the optimization
problem. Formally, the perturbation is calculated as:

η = εsign(∇xjθ(x, l)) (1)

In equation 1, ε represents the update step width or magnitude
of the perturbation, η is the difference between original and
perturbed input, ∇x represents the gradient with respect to
each example, lastly jθ(x, l) is the loss function used for



training the neural network for original example x and its
corresponding label l. The generated adversarial example x

′

is calculated as:
x

′
= x+ η (2)

FGSM is a very powerful attack because it is resilient to
the regularization techniques such as dropout and norm-based
regularization methods.

2) Basic Iterative Method: Kurakin et al. [20] proposed
an element-wise basic iterative method (BIM) for adversarial
falsification. It is an iterative procedure for generating adver-
sarial example for physical world applications. They improved
the success rate of the FGSM attack by including an iterative
clipping method for each pixel to avoid large changes in the
pixel values.The generated adversarial example is calculated
via multiple iterations. The adversarial example generation
procedure is given as:

x0 = x, (3)

xn+1 = Clipx,ξ(xn + εsign(∇xjθ(x, l))) (4)

Where xn+1 is an adversarial example after n+ 1 iterations.
The rest of the parameters are similar to the one utilized in
the FGSM attack.

3) Jacobian-based Saliency Map Attack: Papernot et al.
[31] proposed a new efficient method for generating adver-
sarial examples called the Jacobian-based saliency map attack
(JSMA). This attack is an iterative method for generating a
saliency map to find out the most discriminative features, a
Small perturbation is added to these discriminative features
to fool the classifier. This attack is based on calculating the
Jacobian of the forward propagating examples with respect to
the input sample. The procedure of generating the saliency
map of each sample is given as:

J(x) =
∂f(x)

∂x
= [

∂f j(x)

∂(xi)
] (5)

This attack achieved 97% accuracy by altering only 4.2% of
the input features. Although this attack provides very effective
adversarial examples but it is computationally very expensive
[31].

IV. EXPERIMENTAL EVALUATION

We evaluated the CNN based malware classifier against
adversarial examples. Through our experiments, we want to
answer the following questions:
• Question 1: Since ML/DL techniques are necessary to

fuel the CSON, do these techniques provide the necessary
robustness required to deal with adversarial perturba-
tions?

• Question 2: How to build deterrence against adversarial
attacks in CSON?

• Question 3: Do the deterrence techniques against ad-
versarial examples create an arms race between adver-
saries?

Before answering these questions, we provide the details of
the dataset used for our experiments.

Fig. 2: Malware image and related features in the image.

A. Dataset

Nataraj et al. [28] provided a malware grayscale images
dataset based on their novel image processing technique where
malware execute-able are viewed as a grayscale image for
visualizing malware families for classification purposes. We
evaluated the performance of our proposed CNN architec-
ture and adversarial attacks on malware classifiers using this
dataset. The dataset consists of 9, 458 malware images divided
into 25 different malware families like Allaple.L, Allaple.A,
Lolyda. AA etc. These malware families belong to major
malware types such as worm, PWS, trojan, Dialer, Tdown-
loader, rouge, and backdoor, more details about malware types
and related families in the dataset is available in [28]. Here
we want to highlight that to keep the excutability of the
malware we have limited the scope of the perturbation to the
uninitialized data and zero padding portion of the malware
image. We utilized 70% of the data for training and 30%
for testing. Figure 2 depicts a sample malware image and its
associated attributes.

B. Results

We evaluated the performance of adversarial attacks on
CSON using malware classifiers as a proxy. The dataset details
are provided in section IV-A. Both FGSM and BIM attacks
are element-wise attacks, with individual perturbation scope,
non-targeted specificity and same perturbation magnitude pa-
rameter ε. We performed both attacks using multiple values
of ε with 10, 50 and 100 epochs. Our experimental results
are shown in Tables II and III. JSMA is a targeted, iterative,
Euclidean distance based attack. It has two major controlling
parameters; namely, maximum distortion parameter γ and rate
of perturbation in the features θ. For this experiment, we fixed
θ to be +1 and varied the value of γ between 0.1, 0.2 and
0.3 for 10, 50 and 100 epochs. The achieved adversarial test
accuracy values along with the average number of features
perturbed for a successful adversarial example are reported in
Table IV. For all aforementioned experiments, a batch size of
128 and a learning rate of 0.001 were used.

1) Performance impact: The CNN based malware classifier
has a classification accuracy of 98.39% when trained on
legitimate examples. This accuracy is better than the best
accuracy reported on the dataset in consideration. Adversarial
test examples created by employing FGSM have reduced the
classification accuracy from approximately 99% to 1.87%



TABLE II: FGSM attack and defense results with different values of epochs and ε
Fast Gradient Sign Method Attack

Epochs Epsilon
Test accuracy on

Legitimate Samples in (%)
Test accuracy of

Adversarial Examples in (%)
Test accuracy after

Adversarial training in (%)

10
0.1 98.39 1.87 78.16
0.2 98.29 0.37 88.17
0.3 97.97 0.7 91.7

50
0.1 98.02 1.61 94.91
0.2 98.72 0.48 98.07
0.3 97.97 0.27 97.75

100
0.1 98.34 1.55 96.73
0.2 97.34 0.32 96.6
0.3 97.64 0.32 97.43

TABLE III: BIM attack and defense results with different values of epochs and ε
Basic Iterative Method Attack

Epochs Epsilon
Test accuracy on

Legitimate Samples in (%)
Test accuracy of

Adversarial Examples in (%)
Test accuracy after

Adversarial training in (%)

10
0.1 97.22 0.90 61
0.2 96.95 0.75 36
0.3 97.32 0.91 35

50
0.1 97.91 0.48 72
0.2 98.07 0.27 38
0.3 97.38 0.70 30

100
0.1 97.91 0.70 77
0.2 98.81 0.64 47
0.3 97.59 1.02 31

TABLE IV: JSMA attack with average number of features perturbed for different values of epochs and γ
Jacobian-based Saliency Map Attack

Epochs Gamma
Test accuracy on

Legitimate Samples in (%)
Test accuracy of

Adversarial Examples in (%)
Average number of

Features Perturbed (%)

10
0.1 95.93 9.13 90.5
0.2 97 4.8 95.8
0.3 96.62 4.8 95.2

50
0.1 97.53 4.83 94.28
0.2 97.48 5.0 91.04
0.3 96.62 4.8 95.2

100
0.1 98.28 19.67 75.88
0.2 98.28 7.83 88.09
0.3 97.21 5.0 90.83

which is nearly 97% loss in the accuracy of classification and
prevention against adversarial examples. It also means that the
probability of an adversary evading the malware classifier has
increased from 1% to 97% which is very alarming. Similarly,
the BIM attack reduces the test accuracy of adversarial samples
to 0.9% which is even worse than the FGSM attack. In case
of JSMA, the classification accuracy decreased from 98.28%
to 7.87% but it requires an 88.09% of average feature per-
turbations to create successful adversarial examples, which is
computationally very expensive. The full experimental results
are summarized in Tables 2, III and IV.

Malware classifiers are an integral part of the security
architecture of CSON and we demonstrated that a very small
perturbation in the test example has the potential to evade
the integrity of the classifier. This performance degradation
depicts the potential risks of applying ML/DL methods in
the context of CSON without considering the robustness of
ML/DL classifiers and building proper deterrence against ad-
versarial examples. Without such deterrence, ML/DL models
might cause more harm than good in CSON.

2) Computational complexity: Adversarial attacks are not
just random noise/values added to the test samples. Instead,
they are carefully calculated perturbations. These perturbations
are based on exploiting the inherent generalization error and
gradient variations in of ML/DL techniques. As the shown in
Table IV, detecting and exploiting these errors to make effec-
tive adversarial examples is a computationally very complex
and expensive process. Since JSMA works on saliency maps
and forward derivatives to find the most discriminant features,

it becomes computationally very expensive. Table IV depicts
the average number of features perturbed to construct an adver-
sarial example for each class, these values are surprisingly very
high because for each example the underlying data contains
784 features and each feature has a value greater than zero
which is not the case in other standard datasets like MNIST
[22]. This unusual property of the malware image dataset
increases the search space to find the most discriminating
features; thus, resulting in rapid increase in that computational
complexity and poor performance of the JSMA attack.

C. Adversarial Defense

We need to identify that adversarial settings have been
assumed in networks before through tools such as game theory,
but unique challenges emerge and the stakes get higher when
we give more control of the network to ML and algorithms
in CSON [25]. Barreno et al. [3] provided a taxonomy of
defences against adversarial attacks, they have highlighted
that regularization, randomization and information hiding can
ensure defence against adversarial perturbation but these coun-
termeasures are not very effective against attacks described in
section III-D.

There are two major types of defenses against adversarial
examples; namely, proactive and reactive. Proactive defenses
include adversarial training and network distillation. Whereas
reactive defenses include input reconstruction and adversarial
detection. In this paper, we only consider proactive coun-
termeasures against adversarial examples. More detail about
reactive countermeasures against adversarial examples are



explored in [4].
1) Adversarial Training: One countermeasure against ad-

versarial examples is to include adversarial examples in the
training data for ML/DL techniques. Goodfellow et al. [12]
proposed this idea and showed that ML/DL classifiers can be
made more robust against adversarial examples by training
them with adversarial examples. The purpose of including
adversarial examples in the training is to regularize the ML/DL
technique. This regularization helps to avoid over-fitting which
in turn increases the robustness of the ML/DL technique
against adversarial examples.

In this paper, we also explored adversarial training for
making CNN models robust against FGSM and BIM attacks.
Test accuracies before and after the adversarial training are
reported in Tables II and III. The results clearly show that
performing adversarial training can increase the deterrence
against adversarial attacks but it only provides defense against
the adversarial examples on which it is trained, while other
adversarial perturbations continue to pose a threat of evading
the integrity of the classifier.

2) Network Distillation: Network distillation is another
approach of forming a defense against adversarial examples.
Hinton et al. [14] proposed the idea of distillation to improve
the generalization of the deep neural networks. Papernot et al.
[32] used the distillation process to form a defense against ad-
versarial examples. Network distillation is a process of training
a classifier such that the generation of adversarial examples
becomes very difficult. This defense is based on hiding the
gradients between pre-softmax layers and the softmax output,
which reduces the chances of developing a gradient-based
attack against deep neural networks. Since in this paper we
consider white-box attacks where an adversary knows the
model parameters (i.e., architecture, hyper-parameters, gradi-
ents, etc.), this defensive scheme is not applicable to our study.
More information on defence schemes against adversarial
examples can be found in [38].

V. DISCUSSIONS, CHALLENGES AND FUTURE EXTENSIONS

Our experimental results clearly demonstrate that applying
ML/DL techniques in CSON without taking into account
adversarial perturbation threats can potentially lead to major
security risks. To date, there does not exist any appropriate
solution that provides deterrence against all kinds of adversar-
ial perturbations. Our experiments answer the questions posed
earlier in Section IV. Furthermore, they provide the following
insights:
• Robustness of ML/DL for CSON: In section IV-B, we

have shown that CSON are very vulnerable to adversarial
attacks. Sparsity, high dimensionality, unstructured na-
ture, unique data packing scheme, large salient feature
decision space of network data and less fault tolerance
makes adversarial attacks more lethal for CSON as
compared to other vision and language data. Given the
adversarial threat, networking community has to come
up with new ML/DL mechanism to ensure appropriate
deterrence against adversarial examples. Robustness can

be introduced by incorporating approximation and fault
tolerance on top of defense techniques against adversarial
threats.

• Deterrence against adversarial attacks in CSON: We
have performed proactive defense against adversarial at-
tacks by training on adversarial examples. This adver-
sarial training procedure provides deterrence against the
adversarial examples it is trained on but an unknown
adversarial perturbation can evade the classifier. Table
II depicts that when the classifier is trained via an
adversarial training procedure, it enables the malware
classifier to classify FGSM based adversarial examples
correctly with 97.43% accuracy after 100 epochs but
the same classifier was unable to classify BIM attacks
with appropriate accuracy even after 100 epochs of ad-
versarial training. This shows that before incorporating
ML/DL techniques in support of CSON applications like
routing, intrusion detection, traffic classification, malware
detection, the research community needs to figure out an
appropriate defense against all adversarial perturbations.
The margin of error in adversarial examples classification
is very narrow in networking application when compared
to computer vision problems.
Building deterrence against adversarial examples requires
a method to improve generalization, this can be achieved
via constraint objective function optimization, distributed
denoising, and exploiting vicinal risk minimization in-
stead of empirical losses. Apple Inc. [27] proposed
a distributed denoising scheme for building deterrence
against adversarial attacks for security-critical applica-
tions whereas Zhang et al. [40] proposed a method for im-
proving the generalization of the ML/DL schemes which
uses vicinal risk minimization rather than conventional
empirical loss minimization. This procedure improves
the robustness of ML/DL techniques against adversarial
examples. Our experiments demonstrate that CSON are
currently lacking the capability to provide appropriate
defense against adversarial attacks on ML/DL techniques.

• Arms race between adversaries: Our experiments also
highlight that using ML/DL techniques in CSON can lead
to an arms race situation between adversaries. Conse-
quently, adversarial attacks and defense mechanisms will
be in an arms race where attackers keep on dynamically
changing the adversarial perturbations and defenders have
to adapt accordingly.

ML/DL techniques will enable future CSON but before their
deployments, the research community has to figure out an
effective way to deal with adversarial attacks.

A. Open issues

• Standardized datasets: Progress in CSON largely de-
pends upon learning from data obtained from the user, op-
erating system, and application. Unfortunately, there does
not exist a single standardized dataset for benchmark-
ing ML/DL techniques for real-time networking applica-
tions. In order to ensure a proper utilization of ML/DL



techniques with efficient deterrence against adversarial
examples networking community has to come up with
standardized datasets for security-critical applications.

• Learning from untapped network data: Building de-
terrence in CSON against adversarial examples can be
achieved by improving the generalization of ML/DL tech-
niques. Generalization can be improved by harnessing the
features from untapped networking data (network data
that is recorded but not utilized in decision making) by
introducing new network telemetry schemes for CSON.
This can be a very promising way forward in realizing
security critical CSON.

• New ML/DL mechanisms: Conventional ML/DL tech-
niques are very vulnerable to adversarial examples as
shown in section IV-B and related defense schemes do not
qualify for CSON applications. Developing new ML/DL
schemes for unstructured networking data which are
robust to adversarial threats is still an open avenue. Ge-
ometric and graph ML/DL techniques have the potential
to solve this issue but have not yet been explored in this
context.

VI. CONCLUSION

In this paper, we evaluated the feasibility of employing
ML/DL techniques to realize CSON in security critical appli-
cations and their ability to defend against adversarial exam-
ples. We demonstrated that network data is highly susceptible
to adversarial attacks. We also evaluated the proactive defense
mechanisms to build a defense against adversarial perturba-
tions. Our experiments demonstrate that the application of
ML/DL techniques in networking can push the limits on
the state-of-the-art in CSON. However, without taking into
account the threat of adversarial examples, significant security
risks will be a major hindrance to the deployment of these
networks.
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