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Large System Decentralized Detection Performance
Under Communication Constraints

Sudharman K. Jayaweera,Member, IEEE

Abstract— The problem of decentralized detection in a sensor
network subjected to a total average power constraint and
all nodes sharing a common bandwidth is investigated. The
bandwidth constraint is taken into account by assuming non-
orthogonal communication between sensors and the data fusion
center via direct-sequence code-division multiple-access (DS-
CDMA). In the case of large sensor systems and random
spreading, the asymptotic decentralized detection performance
is derived assuming independent and identically distributed (iid)
sensor observations via random matrix theory. The results show
that, even under both power and bandwidth constraints, it is
better to combine many not-so-good local decisions rather than
relying on one (or a few) very-good local decisions.

Index Terms— Data fusion, distributed detection, large-system
analysis, sensor networks.

I. I NTRODUCTION

This paper considers decentralized detection in energy-
constrained, large wireless sensor networks in noisy, band-
limited channels. Although there is a considerable amount of
previous work on the subject of distributed detection, most
of it used to ignore the effect of noisy channels between
the local sensors and data fusion center. Even less is the
attention received by bandlimited noisy channels in the context
of decentralized detection. For example, while distributed de-
tection performance of an energy-constrained wireless sensor
network over a noisy channel has been considered recently [1],
it assumes orthogonal sensor-to-fusion center communication
leading to an infinite bandwidth assumption. However, in
applications involving dense, low-power, distributed wireless
sensor networks it is more likely that all nodes will share a
common available bandwidth. In this case, the assumption of
large sensor systems implies non-orthogonal communication
between the sensor nodes and the fusion sensor.

An important design objective in low-power wireless sensor
systems is to extend the whole network lifetime. Thus, a
sensible constraint on the sensor system is a finite total power
[1]. In this paper, the bandwidth constraint is taken into
account by assuming non-orthogonal direct-sequence code-
division multiple-access (DS-CDMA) communication between
sensors and the data fusion center. The main contribution
of this paper is the derivation of the decentralized detection
performance, in closed-form, under a total power constraint
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when the communication channel between the local sensors
and the fusion center is both bandlimited and noisy. As we
will see, the performance is a function of the exact signalling
codes used by the distributed sensors for any finite-size sensor
network. However, in the case of random spreading we are able
to derive an elegant and simple closed-form expression thatis
independent of the exact spreading codes once we consider
asymptotically large sensor systems. This is our main result
and, as we will see, it allows us to draw general conclusions
regarding the design of wireless sensor systems under such
total power constraints in noisy and bandlimited channels.

The remainder of the paper is organized as follows: In
Section II we present our system model. Next, in Section
III we use random matrix theory to derive a closed-form
expression for the decentralized detection performance ina
large sensor system followed by a discussion of our analysis.
Finally, in Section IV we conclude by summarizing our results.

II. SYSTEM MODEL DESCRIPTION

We consider a binary hypothesis testing problem in an
Ns-node wireless sensor network connected to a data fusion
center via distributed parallel architecture. Let us denote by
H0 andH1 the null and alternative hypotheses, respectively,
having corresponding prior probabilitiesP (H0) = p0 and
P (H1) = p1. We will consider that the observed stochastic
process under each hypothesis consists of one of two possible
Gaussian signals, denoted byX0,n and X1,n, corrupted by
additive white Gaussian noise. Under the two hypotheses the
n-th local sensor observationzn, for n = 1, · · ·Ns, can be
written as

H0 : zn = X0,n + vn

H1 : zn = X1,n + vn (1)

where the observation noisevn is assumed to be zero-
mean Gaussian with the collection of noise samples having
a covariance matrixΣv. Each local sensor processes its
observationzn independently to generate a local decision
un(zn) which are sent to the fusion center. Let us denote
by r(u1(z1), u2(z2), · · · , uNs

(zNs
)) the received signal at

the fusion center. The fusion center makes a final decision
based on the decision ruleu0(r). The problem at hand is to
chooseu0(r), u1(z1), u2(z2), · · · , uNs

(zNs
) so that a chosen

performance metric is optimized.
The solution to this problem is known to be too complicated

under the most general conditions [2]. While optimal local
processing schemes have been derived under certain special
assumptions, a class of especially important local processers
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are those that simply amplify the observations before retrans-
mission to the fusion center [1], [3]. Thus, the local sensor
decisions sent to the fusion center are given by,un = gzn
for n = 1, · · ·Ns whereg > 0 is the analog relay amplifier
gain at each node. In our model all sensor nodes share a
common bandwidth and a total available energy. For analytical
reasons, as well as due to their practical relation to DS-
CDMA communications, we consider bandwidth sharing non-
orthogonal communication based on spreading in which each
sensor node is assigned a signature code of lengthN . If the
n-th sensor node is assigned the codesn, the received chip-
matched filtered and sampled discrete-time signal at the fusion
center can be written asr = g

∑Ns

n=1
snzn + w = gSz + w

wherer andw areN -dimensional received signal and receiver
noise vectors, respectively and then-th column of theN×Ns

matrixS is equal to the vectorsn. We assume that the receiver
noise is a white Gaussian noise process so that the filtered
noise vectorw ∼ N (0, σ2

wIN ).Then we have that

H0 : r ∼ N (m0,Σ0)

H1 : r ∼ N (m1,Σ1) (2)

where, for j = 0, 1, mj = gSE{Xj} and Σj =
g2S (Cov(Xj) + Σv)S

T + σ2
wIN .

To be specific, consider the detection of a deterministic
signal so thatX1 = −X0 = m1 is known (m > 0)
and Σ0 = Σ1 = Σ where (1 is the vector of all ones)
Σ = g2SΣvS

T +σ2
wIN . With these assumptions we also have

that m1 = −m0 = gmS1 and the radiated power of node
n is then given byE{|un|2} = g2E{|zn|2} = g2(m2 + σ2

v)
whereσ2

v is the observation noise variance. Let us define the
total power constraint the whole sensor system is subjectedto
asP , so that the amplifier gaing is given by

g =

√

P

Ns(m2 + σ2
v)
. (3)

Then, it can be shown that the optimal threshold rule at the
fusion center is of the form

u0(r) =







1 ≥
if T (r) τ ′

0 <
, (4)

where we have defined the decision variableT as T (r) =

(m1 −m0)
T Σ−1r = 2gm1TST

(

g2SΣvS
T + σ2

wIN
)−1

r
andτ ′ is the threshold that depends on the specific optimality
criteria. It can be shown that the false-alarmPf and missPm

probabilities of the detector (4) are given by

Pf = Q

(

τ ′ + 2g2m21TSTΣ−1S1

2gm
√
1TSTΣ−1S1

)

, (5)

and

Pm = Q

(

2g2m21TSTΣ−1S1− τ ′

2gm
√
1TSTΣ−1S1

)

. (6)

For example, in the case of Neyman-Pearson optimality at
the fusion center,τ ′ is chosen to minimizePm subject to
an upper bound onPf . On the other hand under Bayesian
minimum probability of error optimality one would choose

τ ′ to minimize Pe = p0Pf + p1Pm. As one would expect,
the performance of course depends on the particular codes
assigned to each sensor node as seen from (5) and (6). Thus,
while it is possible to evaluate the performance for specific
systems via (5) and (6), it is rather difficult to draw general
conclusions regarding the design of decentralized detection
systems. However, such conclusions can be reached for large
systems through asymptotic analysis, as we show next.

III. L ARGE SENSORSYSTEM PERFORMANCEANALYSIS

Let us assume that the spreading codes are chosen ran-
domly so that each element ofsn takes either 1√

N
or − 1√

N
with equal probability. Moreover, we take independent sensor
observations such thatΣv = σ2

vI. Let us assume a large
sensor system such that bothNs andN are large such that
limN−→∞

Ns

N
= α. Now using a theorem on the convergence

of the empirical distribution of eigenvalues of a large random
matrix proven in [4], we may prove the following proposition,
which is the main result of this paper:

Proposition 1: With S andΣ defined as above,

g21TSTΣ−1S1 −→
(

σ2
v

Ns

+
m2 + σ2

v

Pβ0

)−1

, (7)

almost surely, asN −→ ∞, where

β0 =

√

(γ + σ2
w)

2
α2 + 2γ(σ2

w − γ)α+ γ2
−

(

γ + σ2

w

)

α+ γ

2γσ2
w

(8)

with γ = P
N

(

1 + m2

σ2
v

)

−1 andΣv = σ2
vI.

Proof: See Appendix I.
The proposition 1 leads to the following corollary on the

asymptotically large sensor system performance of decentral-
ized detection in noisy bandlimited channels:

Corollary 1: With all notation as defined above,
when limN−→∞

Ns

N
= α, the large sensor network

performance of the decentralized detection is given
by Pf −→ Q

(√
µ(τ ′ + 2m2

µ
)/2m

)

and Pm −→
Q
(√

µ(2m
2

µ
− τ ′)/2m

)

whereµ =
σ2

v

Ns

+
m2

+σ2

v

Pβ0

.
The above corollary leads to insights on large sensor system

performance of decentralized detection in noisy, bandlimited
channels. For instance, in the special case of minimum prob-
ability of error optimality at the fusion center, accordingto
corollary 1, the large system probability of error is asymptot-
ically given by

Pe(α) −→ Q (m/
√
µ) , (9)

where convergence is almost surely andµ is as defined above.
Figure 1a shows the convergence of the random-spreading

based decentralized detection performance as predicted by(9).
Note that the exact analysis in Fig. 1a was obtained for a
random choice of the code matrixS. As can be seen from
Fig. 1a, (9) provides a good approximation to the detection
performance for large spreading lengthsN , and thus for large-
sensor systems (sinceNs = Nα). More importantly, we can
observe from Fig. 1a that for each fixedN , increasingα
improves the decentralized detection performance. Since this
is equivalent to increasing the number of sensorsNs allowed
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Fig. 1. Decentralized Detection Performance in a Noisy, Bandlimited Channel Subjected to a Total Power Constraint (a) Large Sensor System Approximation
(b) Limit of Large Sensor System Approximation whenα −→ ∞.

in the system for a fixed bandwidth we conclude that it is
better to allow as many sensors to send their local decisions
to the fusion center.

In fact, for large alpha, one can show thatβ0 −→ 1

σ2
w

, and
as a result, in this case the error probability in (9) goes to

Pe(α) −→ Q





√

P

σ2
w

(

1 +
σ2
v

m2

)−1



 . (10)

On the other hand, if one were to allocate all available power
P and the total bandwidth to just one sensor node the fusion
center performance will be given by

Pe,1 = Q





√

P

σ2
w

(

P/σ2
w

m2/σ2
v

+

(

1 +
σ2
v

m2

))−1



 .(11)

Comparison of (10) and (11) shows that allowing more
sensor nodes in the network is better even if the channel is
both noisy and bandlimited. This comparison is shown in Fig.
1b. First, we can observe from Fig. 1b that asN increases the
fusion center performance improves. Secondly we see that as
N −→ ∞, the performance for largeα indeed goes to (10).
Third, Fig. 1b confirms that combining more local decisions is
better than allocating all available power and bandwidth toone
sensor. Moreover, the performance improves monotonically
with increasingα (for a fixed N ) showing that it is better
to combine as many local decisions as possible at the fusion
center. We should divide the available power among all nodes
and allow all of them to share the available bandwidth even if
they are to interfere with each other due to non-orthogonality.

IV. CONCLUSIONS

We analyzed the decentralized detection performance of a
total average power constrained wireless sensor network ina
noisy and bandlimited channel. Assuming that the sensors-
to-fusion center communication is based on DS-CDMA, a
closed form expression for the fusion performance, and its
large system asymptotic under random spreading were derived.
It was shown that in a noisy, bandlimited channel it is bene-
ficial to combine as many sensor local decisions as possible
even if this leads to non-orthogonal sensor-to-fusion center
communication.

APPENDIX I
THE PROOF OFPROPOSITION1

Proof: Using the definitions ofS and1, we can write

g
2
1
T
S
TΣ−1

S1 = g
2









Ns
∑

n=1

s
T
nΣ

−1
sn +

Ns
∑

n=1

Ns
∑

n′=1

n
′ 6=n

s
T
nΣ

−1
sn′









(12)

Let I denote a set of sensor indices (i.e.I ⊂ {1, 2, · · · , Ns}),
SA denote the matrixS with column indices specified by setA
deleted,Λn = g2σ2

vIn andQA =
(

SAΛNs−|A|SA + σ2
wIN

)

whereIn and|A| are then×n identity matrix and the cardi-
nality of setA, respectively. Then, forn = 1, · · · , Ns, using
the matrix inversion lemma we can show thatsTnΣ

−1sn =
sTnQ

−1

{n}sn/(1+g2σ2
vs

T
nQ

−1

{n}sn). But, applying Theorem 7 of

[4] and using (3), we can show thatsTnQ
−1

{n}sn −→ β0 almost

surely, whereβ0 is as given by (8) andγ = P
N

(

1 + m2

σ2
v

)−1

.
Combining these we have almost surely

sTnΣ
−1sn −→

(

β0
−1 + g2σ2

v

)−1
. (13)

Similarly, repeated application of matrix inversion lemma
twice show that,

s
T
nΣ

−1
sn′ =

sTnQ
−1

{n,n′}
sn′

(

1 + g2σ2
vs

T
nQ

−1

{n}sn

) (

1 + g2σ2
vs

T
n′Q

−1

{n,n′}sn′

) . (14)

Now the use of Theorem 7 of [4] shows that RHS goes to
zero almost surely, forn 6= n′. Substituting (13) and (14) in
(12) gives (7), completing the proof.

REFERENCES

[1] J. Chamberland and V. V. Veeravalli, “Decentralized detection in wireless
sensor systems with dependent observations,” inProc. 2nd Intl. Conf. on
Computing, Commun. and Contrl. Technologies, Austin, TX, Aug. 2004.

[2] R. R. Tenney and N. R. Sandell Jr., “Detection with distributed sensors,”
IEEE Trans. Aerospace and Electronic Systems, vol. AES-17, no. 4, pp.
501–510, July 1981.

[3] J. Chamberland and V. V. Veeravalli, “Asymptotic results for decentralized
detection in power constrained wireless sensor networks,”IEEE Journal
on Select. Areas in Commun., vol. 22, no. 6, pp. 1007 – 1015, Aug. 2004.

[4] J. Evans and D. N. C. Tse, “Large system performance of linear multiuser
receivers in multipath fading channels,”IEEE Trans. on Inform. Theory,
vol. 46, pp. 2059 – 2078, Sep. 2000.


	Introduction
	System Model Description
	Large Sensor System Performance Analysis
	Conclusions
	Appendix I: The Proof of Proposition ??
	References

