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Further Results on Local Stability of
REM Algorithm with Time-Varying Delays

Huijun Gao, James Lam, Changhong Wang, and Xinping Guan

Abstract— This letter presents some further results on the
local stability in equilibrium for Internet congestion control
algorithm proposed by Low et al. (IEEE/ACM Transactions
on Networking, 1999). The propagation delay d(t) is assumed
to be time-varying and have maximum and minimum delay
bounds (i.e. dm ≤ d(t) ≤ dM ), which is more general than
the assumption (0 < d(t) ≤ m) made in Long et al.’s work
(IEEE Communications Letters, 2003). It is proved that the
stability conditions for the Internet congestion control algorithm
obtained in Long et al.’s work are in fact dependent on the delay
interval (dM − dm). Moreover, some new stability conditions
are proposed, which are less conservative than Long et al.’s
results. The proposed linear matrix inequality based stability
conditions can be solved by using standard numerical software.
These stability conditions provide a method for selecting the
parameters in REM algorithm that ensure stability.

Index Terms— Congestion control algorithm, linear matrix
inequality, time-varying propagation delay, local stability, REM.

I. INTRODUCTION

IT IS well known that the transfer control protocol (TCP)
algorithm executed at sources and the active queue manage-

ment (AQM) algorithm executed at links (routers) determine
the equilibrium and dynamics of an IP network, such as the
Internet. Therefore, the TCP/AQM pair plays an important
role in controlling congestion, which can be interpreted as a
distributed algorithm carried out by sources and links over
the network to maximize aggregate source utility subject to
capacity constraints [7]. As a new AQM, random exponential
marking (REM) is proposed in [1], [6], which includes two
new ides: (1) The equilibrium value of congestion measure and
that of the performance is decoupled such that high utilization
with low loss and delay in equilibrium is achieved; (2) By us-
ing a probabilistic marking function that is exponential in the
link congestion measure, the end-to-end marking probability
observed at a source is exponential in the path congestion
measure. It has been well demonstrated in [1] via simulations
that REM has significant performance advantage.

Dynamics is an important property of any algorithm. Al-
though REM has particular advantage in achieving desirable
equilibrium properties (high link utilization with little loss or
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queuing delay), its dynamics was not given explicit consid-
eration. Very recently, the stability of REM has drawn much
attention from researchers working in related area and a few
important results have been reported. These works can be
generally divided into two categories according to whether
they have taken the propagation delay into consideration.
When the delay is absent, the global stability of REM is
investigated in [8], [9] by using different approaches. When
time delay is considered, [10] derives local stability conditions
for REM for a discrete-time multi-link model when all sources
have the same delay of one or two-step discrete time. In
addition, [5] presents a linear matrix inequality (LMI) based
approach to analyze the stability of REM. These conditions
provide a guideline for setting REM parameters that ensure
stability.

Following the work of Long et al. [5], in this letter we
present some further results on the local stability of REM.
The propagation delay d(t) is assumed to be time-varying and
have maximum and minimum delay bounds (that is, dm ≤
d(t) ≤ dM ), which is more general than the assumption (0 <
d(t) ≤ m) made in [5]. It is proved that the stability conditions
proposed in Long et al.’s work are actually dependent on
the delay interval (dM − dm). Moreover, some new stability
conditions are proposed, which are less conservative than
those presented in [5]. The proposed stability conditions are
all expressed as LMI-based conditions, which can be solved
by using available techniques in standard numerical software
[4]. If these conditions are feasible, REM parameters can be
readily constructed.

Due to space limitation, in this letter we only consider the
single-source algorithm. However, extension to multi-source
algorithm can be performed in a trivial manner.

Notations: The superscript “T ” stands for matrix transpo-
sition; the notation P > 0 means that P is real symmetric
and positive definite; I and 0 represent identity matrix and
zero matrix. In symmetric block matrices or long matrix
expressions, we use an asterisk (∗) to represent a term that
is induced by symmetry. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations.

II. MODEL AND EXISTING RESULT

Based on the dual model proposed by [1], the network
model can be given by the following nonlinear discrete time-
delay systems:

y(t) = x(t − d→(t)) (1)

q(t) = p(t − d←(t))
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x(t) = f(q(t))
p(t + 1) = [p(t) + γ(α(b(t) − b∗) + y(t) − c)]+

b(t + 1) = [b(t) + y(t) − c]+

By assuming d(t) = d→(t) + d←(t), in equilibrium y∗ = c
and p∗ > 0, the above nonlinear model is linearized as the
following linear discrete time-delay system [5]:

X (t + 1) = AX (t) + BX (t − d(t)) (2)

where

X (t) =
[

p̄(t)
b̄(t)

]
=

[
p(t) − p∗

b(t) − b∗

]
, A =

[
1 η
0 1

]
,

B =
[

γf ′(p∗) 0
f ′(p∗) 0

]
, η = γα

In [5], the time-varying delay is assumed to be 1 ≤ d(t) ≤
m. Then, according to Lemma 1 in [5], the asymptotic stability
of (2) is expressed in the following lemma.

Lemma 1: [5] System (2) is asymptotically stable if there
exist matrices P > 0, Q > 0 satisfying

−P+AT PA + AT PB(Q−BT PB)−1BT PA+mQ < 0 (3)
Since (3) is actually a nonlinear matrix inequality, in order

to obtain an LMI-based condition, the following constraints
have been imposed:

P = I, Q = δI (4)

which leads to the local stability condition for REM given
below.

Lemma 2: [5] Suppose the time delay satisfies 1 ≤ d(t) ≤
m. The equilibrium of REM is locally asymptotically stable
if there exist positive scalars γ, ε, δ and 0 < η < 1 satisfying⎡

⎣ (ε − 1)I 0 AT

∗ −δI BT

∗ ∗ −I

⎤
⎦ < 0

Moreover, if we can find a set of feasible solution (γ∗, ε∗, δ∗,
η∗), then α = η∗/γ∗, m = ε∗/δ∗.

III. MAIN RESULTS

In this letter, we consider a more general assumption on
the time delay d(t), that is, the time-varying delay d(t) has
maximum and minimum bounds, characterized by

dm ≤ d(t) ≤ dM (5)

It is worth noting that the assumption 1 ≤ d(t) ≤ m made in
[5] can be seen as a particular case of (5) by setting dm = 1
and dM = m. The reason why we consider Assumption (5)
is that in practical situations, the minimum delay bound may
be known a priori. Taking both the minimum and maximum
delay bounds into consideration will in general lead to less
conservative stability test, which can be seen more clearly in
the following theorem.

Theorem 1: Assume the time delay satisfies (5). System (2)
is asymptotically stable if there exist matrices P > 0, Q > 0
satisfying

−P + AT PA + AT PB(Q − BT PB)−1

×BT PA + (dM − dm + 1)Q < 0 (6)

Proof. Choose the Lyapunov function as

V (t) = V1 + V2 + V3

V1 = X T (t)PX (t), V2 =
t−1∑

i=t−d(t)

X T (i)QX (i),

V3 =
−dm+1∑

j=−dM+2

t−1∑
i=t+j−1

X T (i)QX (i) (7)

where P and Q are positive definite matrices to be determined.
Define ∆V = V (t + 1)−V (t), then along the solution of (2)
we have

∆V1 = X T (t + 1)PX (t + 1) −X T (t)PX (t) (8)

∆V2 =
t∑

i=t−d(t+1)+1

X T (i)QX (i) −
t−1∑

i=t−d(t)

X T (i)QX (i)

= X T (t)QX (t) −X T (t − d(t))QX (t − d(t))

+
t−1∑

i=t−d(t+1)+1

X T (i)QX (i) −
t−1∑

i=t−d(t)+1

X T (i)QX (i)

≤ X T (t)QX (t) −X T (t − d(t))QX (t − d(t))

+
t−dm∑

i=t−dM+1

X T (i)QX (i) (9)

∆V3 = (dM − dm)X T (t)QX (t) −
t−dm∑

i=t−dM+1

X T (i)QX (i)

(10)
Therefore, we have

∆V ≤ λT (t)Ωλ(t)

where

Ω =
[ AT PA− P + (dM − dm + 1)Q AT PB

∗ BT PB − Q

]
,

λ(t) =
[ X (t)

X (t − d(t))

]
By Schur complement, (6) is equivalent to Ω < 0, which
guarantees ∆V < 0 for all nonzero X (t). Therefore, we
can conclude from the standard Lyapunov stability theory that
system (2) is asymptotically stable for all time-varying delays
satisfying dm ≤ d(t) ≤ dM . �

An interesting feature of Theorem 1 lies in the fact that
although the derivation process is quite different, the matrix
inequality presented in Theorem 1 takes a very similar form
as that in Lemma 1 except that m in (3) is replaced by (dM −
dm + 1). If we set dm = 1 and dM = m in (6), (6) is exactly
the same as (3). In this sense, Theorem 1 generalizes Lemma 1
to a more general case. Another interesting feature of Theorem
1 is that condition (3) is actually dependent only on the varying
range of the time delay, that is, dM − dm. In other words, if
we can find feasible solutions according to Theorem 1 for
dm ≤ d(t) ≤ dM , we can also find feasible solutions for
n + dm ≤ d(t) ≤ n + dM where n is a positive integer.

Similar to Lemma 1, the condition in Theorem 1 is also a
nonlinear matrix inequality. It is noted that if we still impose
the constraint in (4), we will obtain a stability condition for
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REM similar to Lemma 2. However, the method used in [5]
to obtain Lemma 2 deserves some remarks:

1) Constraint (4) is very strong, to obtain less conservative
stability result we need to seek different techniques;

2) The obtained delay bound from Lemma 2 is m = ε∗/δ∗.
It is noted that ε∗ and δ∗ are generally real scalars,
therefore the obtained m is not guaranteed to be integers,
which seems unreasonable and restrictive. In fact, we
could leave the delay bound m intact in the matrix
inequality, and then use a line search method to find
the maximum bound m.

In the following, we will establish LMI-based stability
conditions for REM based on Theorem 1. First by Schur
complement [2], (6) is equivalent to⎡

⎣ −P−1 A B
∗ −P + (dM − dm + 1)Q 0
∗ ∗ −Q

⎤
⎦ < 0 (11)

Then, we readily have the following theorem.
Theorem 2: Suppose the time delay satisfies dm ≤ d(t) ≤

dM . The equilibrium of REM is locally asymptotically stable
if there exist matrices L > 0, P > 0, Q > 0, γ and 0 < η < 1
satisfying⎡

⎣ −L A B
∗ −P + (dM − dm + 1)Q 0
∗ ∗ −Q

⎤
⎦ < 0 (12)

LP = I (13)

Moreover, if we can find a set of feasible solution (L∗, P ∗,
Q∗, γ∗, η∗), then α = η∗/γ∗.

Theorem 2 presents a stability condition for REM, which is
equivalent to (6). One may argue that the conditions in Theo-
rem 2 are not strict LMI conditions, however, such conditions
are not difficult to solve by using the cone complementarity
linearization (CCL) method [3].

Obviously, if we impose the following constraints on the
matrix variables in Theorem 1 such that

P =
[

1 0
0 p

]
, Q =

[
q1 q2

q2 q3

]
(14)

then by substituting the matrix variables defined in (14) into
(11) together with a congruence transformation, we readily
obtain the following theorem.

Theorem 3: Suppose the time delay satisfies dm ≤ d(t) ≤
dM . The equilibrium of REM is locally asymptotically stable
if there exist scalars p, q1, q2, q3, γ and 0 < η < 1 satisfying⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 1 η γf ′(p∗) 0
∗ −p 0 p pf ′(p∗) 0
∗ ∗ −1 + ∆q1 ∆q2 0 0
∗ ∗ ∗ −p + ∆q2 0 0
∗ ∗ ∗ ∗ −q1 −q2

∗ ∗ ∗ ∗ ∗ −q3

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0

(15)

where ∆ � dM − dm + 1. Moreover, if we can find a set of
feasible solution (p∗, q∗1 , q∗2 , q∗3 , γ∗, η∗), then α = η∗/γ∗.

It is noted that for given ∆, condition (15) is an LMI
condition. By noting that dM and dm are positive integers,
it is not difficult to find the maximum delay interval ∆ by
performing a line search. It is worth noting that since the

constraint (14) is less stringent than (4), condition (15) is less
conservative than Lemma 2 due to the fact that it can search
in a larger variable space.

Finally, to apply the above derived stability conditions to
the selection of parameters γ and α in model (1) which are
essential to the local stability. The following procedure is
useful for this purpose:

1) Given model (1), derive its linearized model (2);
2) By solving the LMI-based conditions in Theorem 2 or

Theorem 3, obtain the feasible parameters γ∗ and η∗;
3) Calculate the parameters for model (1): γ = γ∗, α =

η∗/γ∗.

IV. CONCLUSIONS

This letter has presented several new stability conditions
for network rate control in the presence of time-varying
communication delays. Upon relaxing the assumption on the
time-varying delay (1 ≤ d(t) ≤ m) as used in previous
works to a more general case (dm ≤ d(t) ≤ dM ), several
improved stability conditions are provided, which are theoret-
ically shown to be less conservative than the existing ones.
All the conditions can be tested by using LMI or LMI-based
algorithms in standard numerical software. Due to space limit,
stability conditions are only presented for the single-source
algorithm. However, the idea behind this letter can be easily
extended to the multi-source case.

REFERENCES

[1] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, “REM: active queue
management,” IEEE Network, vol. 15, pp. 48-53, May/June 2001.

[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory. Philadelphia, PA: SIAM,
1994.

[3] L. El Ghaoui, F. Oustry, and M. Ait Rami, “A cone complementarity
linearization algorithm for static output-feedback and related problems,”
IEEE Trans. Automat. Control, vol. 42, pp. 1171-1176, Aug. 1997.

[4] P. Gahinet, A. Nemirovskii, A. J. Laub, and M. Chilali, LMI Control
Toolbox User’s Guide. Natick, MA: The Math. Works Inc., 1995.

[5] C. N. Long, J. Wu, and X. P. Guan, “Local stability of REM algorithm
with time-varying delays,” IEEE Commun. Lett., vol. 7, pp. 142-144,
Mar. 2003.

[6] S. H. Low and D. E. Lapsley, “Optimization flow control – I: basic
algorithm and convergence,” IEEE/ACM Trans. Networking, vol. 7, pp.
861-874, June 1999.

[7] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”
IEEE Control Syst. Mag., vol. 22, pp. 28-43, Jan. 2002.

[8] F. Paganini, “On the stability of optimization based flow control,” in
Proceedings of the American Control Conference, pp. 4689-4694, 2001.

[9] Q. Yin and S. H. Low, “Convergence of REM flow control at a single
link,” IEEE Commun. Lett., vol. 5 pp. 119-121, Mar. 2001.

[10] Q. Yin and S. H. Low, “On stability of REM algorithm with uniform
delay,” in Proc. IEEE Global Telecommunications Conference, pp. 2649-
2653, 2002.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


