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Critical Point for Maximum LikelihoodDecoding
of Linear Block Codes

Marc Fossorier

Abstract— In this letter, the SNR value at which the error
performancecurveof a soft decisionmaximum lik elihooddecoder
reachesthe slope corresponding to the code minimum distance
is determined for a random code.Basedon this value, referred
to as the critical point, new insight about soft bounded distance
decoding of random-lik e codes(and particularly Reed-Solomon
codes)is provided.

Index Terms— Soft decision decoding, maximum lik elihood
decoding,bounded distance decoding,Reed Solomon codes.

I . INTRODUCTION

Boundeddistancedecoding(BDD) has long beenusedas
a design criterion for suboptimumsoft decision decoders.
Early works in this areaarethegeneralizedminimumdistance
(GMD) andChasedecoders[1], [2]. The main justificationof
this criterionis thefactthatBDD hasthesameerrorcorrection
radiusasmaximumlikelihooddecoding(MLD) in Euclidean
space.At practical word error rates (WERs), BDD allows
to achieve near-MLD of short block codes with relatively
low complexity. However, it was indicated in [3] that this
criterion becomesinappropriatefor decodinglonger codesat
suchWERs.

In this letter, we evaluatethe SNR valueat which the error
performanceof MLD becomesdominatedby the minimum
distanceterm for random codes.This value is referred to
as the critical point for MLD of the code. It has beenlong
recognizedthatclassicalupperboundssuchastheunionbound
(UB) or thetangentialspherebound(TSB) [4] rapidly become
tight astheSNRincreases.However for mediumto long code
lengths,it is shown that despitetheir tightness,thesebounds
becomedominatedby the minimum distanceterm at quite
low SNR valuesin general1. Consequentlyat relatively high
SNR values, the performanceloss of BDD over MLD can
becomeeven greaterthan that observed from simulationsat
practical WERs. In particular, for high rate Reed Solomon
(RS) codesover GF(256),assumingtheir weight distribution
is well approximatedby that of a randomcodeof the same
distance[5], the critical points correspondto WERs

���������
and

�	� ��
��
for the(255,239)and(255,223)codes,respectively

(note that theseWERsare lower thanthat of many standards
basedon concatenatedsystemswith RS outer codes).These
resultsalso indicate that an error floor (or flare) may occur
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1If the union boundon MLD is dominatedby the minimum distanceterm,

then it is tight in most cases;however as shown in this letter, the reverse
(occasionallya “folk” result implicitly assumed)is incorrect over a large
rangeof WERs for many classesof codes.

aroundthe critical point for MLD of many long enoughgood
codes.

I I . CRITICAL POINT FOR A RANDOM CODE

We assumean �������������� random-likebinarycodeof length� , dimension � , rate ��������� and minimum distance��� is
usedfor error control of BPSK transmissionover an AWGN
channel.By random-like code,we considera codefor which
eachterm of its weight distribution is well approximatedby
the correspondingcoefficient of a randomcode.As a result,
turbocodesandmany otheriteratively decodablecodesdo not
satisfythis definition.On theotherhand,thebinary imagesof
high rateRS codesdo [5] andconstituteour main motivation.
Anotherclassof random-like codesis that of binary primitive
BCH codes[6].

The WER of MLD is upperboundedby the UB [7] "!�# $%&('*)�+-, &/.10�2 3 ��4/5768�:9-;�< (1)

with , & � 3 �*= $ �?>�@BA $ &�C for a random-like code. Assuming
the SNR value 5D6���9-; is large enough for (1) to tightly
approximate

 "!
, we have !FE GIHKJ&ML 3 �*= $ �?>�@ON � 4�P �Q�RS��4/5 6 �:9 ; � �?��T8U e

��V &(W?X T/Y"Z\[E GIHKJ&^] 3 � $ =_����V"� � = & T $ @�@ e��V &(W?X T/Y"Z�` (2)

with abdc��e�gf�cihkjml U cIfn � foc��\h(j�l U  � fpc�� . Definingq �4r�s� 3 � $ =_����V"� � = & T $ @�@ e��V &kW X T/Y Z � (3)

and expressingt q �4r���Btu4v� �
, simple algebrashows that for

a given value 5 6 �:9 ; , q �4r� takesa uniquemaximumat4w�x� 0 eV W?X T/Y*Zey � < �?�wz (4)

The critical point for MLD is obtainedby setting 4o�{� �
in (4), which gives|5 6 �:9 ; ��}/~ &(� � � �B��h(�*��*�K� � f � � z (5)

From (2), the correspondingWER is well approximatedby !8� }/~ &d� � 3 � $ =_����V"� � = ) + T $ @�@ N �����f�� �oP ) + z (6)

Note that for a randomcodeachieving the Gilbert-Varshamov
(GV) distance ���"� � �Sa �S�  � f���� , �5 6 ��9 ; ��}/~ &d� �� �B��hk�� � �Ka �S�  � f�����f � � and

 !8� }/~ &(� ��|a �?�  � f������O � fa �S�  � f�������� $ �D��� =_����V?@ .
If (5)-(6) provide a simple estimateof the critical point,

tighter values can indeed be found. To this end, one can
numericallyapply the proposedapproachto the TSB.
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Fig. 1. WER for differentdecodingsof the (255,239,17)RS code.

I I I . SIMULATION RESULTS

A. RS(255,239) code

Fig. 1 depicts the WERs obtainedfor various decodings
of the RS(255,239)code:algebraicBDD [7], GMD decoding
at the non binary level as originally proposedin [1], Chase
algorithm-2decodingof the (2040,1912)binary imageof the
RS code[2] and the most reliable basis(MRB) reprocessing
decodingof [8]. Applying the methodproposedin [9], we
verified that with a standardlinear mapping,the binary image
(2040,1912)has codewords of weight 17. Consequentlyall
threesoft decodingalgorithmsrepresentedin Fig. 1 achieve
BDD in Euclidean space.The TSB correspondingto the
weight distribution of a (2040,1912)randomcode truncated
at � � � �K�

has also been represented.We observe that
the threeBDD algorithmshave very different performances.
Furthermore,the slope of the TSB at theseWERs is larger
than that of any of the error performancecurvesrepresented,
assuggestedfrom the resultsof SectionII.

In Fig. 2, the first term of (1) for ����� ���
, the approxi-

mation (2), the TSB, the tight boundon the WER of Chase
algorithm-2decodingobtainedfrom order statistics[3], [10]
and the critical point given by (5)-(6) have been depicted.
We observe that the critical point accurately indicates a
flaring of the MLD error performancecurve. Importantly, the
performancegapbetweentheTSB andChasealgorithm-2has
increasedfrom 1.45 dB at the WER

���O���
to 2.50 dB at the

WER
������� ; , despitethe fact that Chasealgorithm-2achieves

BDD. This gapremainslarger than1 dB at the WER
������� ; .

This figure confirms that the largestgain achieved by MLD
overmany BDD algorithmsis likely to occuraroundtheWER���O��� ; for this code,asindicatedby its critical point for MLD.
Incidentally this WER is lower than that specifiedin most
standardswith this code.

B. RS(255,223) code

The samecurves as in Fig. 2 have been representedfor
a (2040,1784,36)random-like code in Fig. 3. This code
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From left to right at 10−40:

−−−: Minimum distance term of UB

− −:  TSB 

−−−: Approximation (2) of UB

−.−:  Chase algorithm 2 (binary)

 o :   Critical point (7.08, −31.12)

Fig. 2. Boundsandapproximationsfor BDD of a (2040,1912,17)random-
like code.
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From left to right at 10−50:

−−−: Minimum distance term of UB
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−−−: Approximation (2) of UB

−.−:  Chase algorithm 2 (binary)

 o :   Critical point (6.62, −61.29)

Fig. 3. Boundsandapproximationsfor BDD of a (2040,1784,36)random-
like code.

has the samelength and dimensionas the binary image of
RS(255,223),but thecorrespondingGV distanceis ���"�b�x�m� ,
against � ��� �m� for the binary image of RS(255,223).We
observethatthecritical pointalsoindicatesaccuratelyaflaring
of the MLD error performancecurve arounda much lower
WER of

�	� ��
 ; .
C. Random (2000,1000) code

Fig. 4 depictsthe samecurvesasFig. 2 and3 for a random
(2000,1000)codewith minimumdistance���"��� 3�3m3 . Indeed
in that case,the Chasealgorithm-2is unfeasiblebut its error
performancecurve still representsaninterestingreference.We
observe that despitethe fact that Chasealgorithm-2achieves
BDD, the gap in error performancewith respectto MLD
remainsaboutthesamebetweentheWERs

������� ; and
���O�S�rU ; .

Comparingthesethree figures, we observe that for similar
lengths,the critical point is reachedat a lower WER as the
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Fig. 4. Boundsandapproximationsfor BDD of a (2000,1000,222)random-
like code.

ratedecreases.Furthermore,the flaring is reducedas the rate
decreasesand in fact, almostno flaring is observed in Fig. 4.

IV. CONCLUSION

In this letter, a simple parameterreferredto as the critical
point for MLD has beenintroduced.This value indicatesat
which WERtheerrorperformancecurveof MLD startshaving
the sameasymptoticbehavior asa BDD algorithm.It appears
that for many long random-like codes,the critical point is
locatedmuchbelow practicalWER values.
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