Critical Point for Maximum Likelihood Decoding
of Linear Block Codes

Marc Fossorier

Abstract—In this letter, the SNR value at which the error
performance curve of a soft decisionmaximum lik elihood decoder
reachesthe slope correspondingto the code minimum distance
is determined for a random code. Basedon this value, referred
to asthe critical point, new insight about soft bounded distance
decoding of random-like codes(and particularly Reed-Solomon
codes)is provided.

Index Terms— Soft decision decoding, maximum lik elihood
decoding, bounded distance decoding, Reed Solomon codes.

I. INTRODUCTION

Boundeddistancedecoding(BDD) haslong beenusedas
a design criterion for suboptimumsoft decision decoders.
Early worksin this areaarethe generalizedninimumdistance
(GMD) andChasedecoderd1], [2]. The main justification of
this criterionis thefactthatBDD hasthe sameerror correction
radiusas maximumlik elihood decoding(MLD) in Euclidean
space.At practical word error rates (WERs), BDD allows
to achieve nearMLD of short block codeswith relatively
low compleity. However, it was indicatedin [3] that this
criterion becomesnappropriatefor decodinglonger codesat
SuchWERs.

In this letter, we evaluatethe SNR value at which the error
performanceof MLD becomesdominatedby the minimum
distanceterm for random codes. This value is referred to
as the critical point for MLD of the code. It hasbeenlong
recognizedhatclassicalupperboundssuchastheunionbound
(UB) or thetangentialspherebound(TSB) [4] rapidly become
tight asthe SNR increasesHowever for mediumto long code
lengths,it is shawvn that despitetheir tightness thesebounds
becomedominatedby the minimum distanceterm at quite
low SNR valuesin generat. Consequentlyat relatively high
SNR values, the performanceloss of BDD over MLD can
becomeeven greaterthan that obsened from simulationsat
practical WERs. In particular for high rate Reed Solomon
(RS) codesover GF(256),assumingtheir weight distribution
is well approximatedby that of a randomcode of the same
distance[5], the critical points correspondto WERs 103!
and10~%! for the (255,239)and(255,223)codes respectiely
(notethat theseWERSs are lower thanthat of mary standards
basedon concatenatedystemswith RS outer codes).These
resultsalso indicate that an error floor (or flare) may occur
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1f the unionboundon MLD is dominatedby the minimum distanceterm,
thenit is tight in most cases;however as shavn in this letter the reverse
(occasionallya “folk” result implicitly assumed)is incorrect over a large
rangeof WERsfor mary classef codes.

aroundthe critical point for MLD of mary long enoughgood
codes.

Il. CRITICAL POINT FOR A RANDOM CODE

We assumean (n, k, dgr) random-like binary codeof length
n, dimensionk, rate R = k/n and minimum distancedy is
usedfor error control of BPSK transmissiorover an AWGN
channel.By random-like code,we considera codefor which
eachterm of its weight distribution is well approximatecby
the correspondingcoeficient of a randomcode.As a result,
turbo codesandmary otheriteratively decodablecodesdo not
satisfythis definition. On the otherhand,the binaryimagesof
high rate RS codesdo [5] and constituteour main motivation.
Anotherclassof random-like codesis that of binary primitive
BCH codes[6].

The WER of MLD is upperboundedby the UB [7]
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with 4; = 2=("=*) (") for a random-lile code. Assuming
the SNR value E; /N, is large enoughfor (1) to tightly
approximateP,, we have
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with H(p) = —plog, p — (1 — p) log,(1 — p). Defining
f(z) — 2—n(1—R—H(‘i/n))e—RiEb/N0’ (3)

and expressingdf(i)/di = 0, simple algebrashaws that for
agivenvalue E, /Ny, f(i) takesa uniqguemaximumat
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The critical point for MLD is obtainedby settingi = dg
in (4), which gives

(Ep/No)erit = 1/R In(n/dg — 1). (5)
From (2), the correspondingVER is well approximatedy

d dn
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(6)
Note thatfor a randomcodeachieving the Gilbert-Varshame
(GV) distance dgyv nH=1(1 — R), (Ey/No)eric =
1/RIn(1/H *(1—R)—1) and P crit = (H~'(1 - R)/(1 —
H—l(l _ R)))nH_l(l—R).

If (5)-(6) provide a simple estimateof the critical point,
tighter values can indeed be found. To this end, one can
numericallyapply the proposedapproachto the TSB.
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Fig. 1. WER for differentdecodingsof the (255,239,17)RS code.

I1l. SIMULATION RESULTS
A. RY(255,239) code

Fig. 1 depictsthe WERSs obtainedfor various decodings
of the RS(255,239)ode:algebraicBDD [7], GMD decoding
at the non binary level as originally proposedin [1], Chase
algorithm-2decodingof the (2040,1912)inary imageof the
RS code[2] andthe mostreliable basis(MRB) reprocessing
decodingof [8]. Applying the method proposedin [9], we
verified that with a standardinear mapping,the binaryimage
(2040,1912)has codeavords of weight 17. Consequentlyall
three soft decodingalgorithmsrepresentedn Fig. 1 achiere
BDD in Euclidean space.The TSB correspondingto the
weight distribution of a (2040,1912)randomcode truncated
at dg = 17 has also been representedWe obsene that
the three BDD algorithmshave very different performances.
Furthermore the slope of the TSB at theseWERSs is larger
thanthat of ary of the error performancecurvesrepresented,
assuggestedrom the resultsof Sectionll.

In Fig. 2, the first term of (1) for dg = 17, the approxi-
mation (2), the TSB, the tight bound on the WER of Chase
algorithm-2 decodingobtainedfrom order statistics[3], [10]
and the critical point given by (5)-(6) have been depicted.
We obsene that the critical point accurately indicates a
flaring of the MLD error performancecurve. Importantly the
performancegapbetweenthe TSB and Chasealgorithm-2has
increasedrom 1.45dB at the WER 10~* to 2.50 dB at the
WER 10739, despitethe fact that Chasealgorithm-2achieves
BDD. This gapremainslargerthan1 dB at the WER 10~2°,
This figure confirmsthat the largestgain achieved by MLD
over mary BDD algorithmsis likely to occuraroundthe WER
10739 for this code,asindicatedby its critical point for MLD.
Incidentally this WER is lower than that specifiedin most
standardith this code.

B. RY(255,223) code

The samecurves as in Fig. 2 have beenrepresentedor
a (2040,1784,36)random-like code in Fig. 3. This code
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Fig. 2. Boundsand approximationdor BDD of a (2040,1912,17yandom-
like code.
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Fig. 3. Boundsand approximationdor BDD of a (2040,1784,36yandom-
like code.

has the samelength and dimensionas the binary image of
RS(255,223)but the correspondingsV distances dgy = 36,
againstdg > 33 for the binary image of RS(255,223) We
obsenethatthecritical pointalsoindicatesaccuratelya flaring
of the MLD error performancecurve arounda much lower
WER of 100,

C. Random (2000,1000) code

Fig. 4 depictsthe samecurvesasFig. 2 and3 for arandom
(2000,1000)odewith minimumdistancedgy = 222. Indeed
in that case,the Chasealgorithm-2is unfeasiblebut its error
performanceurve still representaninterestingreferenceWe
obsene that despitethe fact that Chasealgorithm-2achieves
BDD, the gap in error performancewith respectto MLD
remainsaboutthe samebetweerthe WERs10~8% and10—129,
Comparingthesethree figures, we obsene that for similar
lengths,the critical point is reachedat a lower WER as the
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Fig. 4. Boundsandapproximationsor BDD of a (2000,1000,222)andom-
like code.

rate decreased-urthermorethe flaring is reducedasthe rate
decreaseandin fact, almostno flaring is obsenedin Fig. 4.

IV. CONCLUSION

In this letter, a simple parametereferredto asthe critical
point for MLD hasbeenintroduced.This value indicatesat
whichWER theerrorperformancesurve of MLD startshaving
the sameasymptoticbehaior asa BDD algorithm.It appears
that for mary long random-like codes,the critical point is
locatedmuch below practical WER values.
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