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Constraining LDPC Degree Distributions for
Improved Error Floor Performance

Sarah J. Johnson, Member, IEEE, and Steven R. Weller, Member, IEEE

Abstract— The error floor performance of finite-length irreg-
ular low-density parity-check (LDPC) codes can be very poor if
code degree distributions are chosen to optimize the threshold
performance. In this paper we show that by constraining the
optimization process, a balance between threshold and error floor
performance can be obtained. The resulting degree distributions
give the best threshold performance subject to some minimum
requirement on the error floor.

Index Terms— Low-density parity-check codes, error floor,
density evolution.

I. INTRODUCTION

THE Tanner graph of a binary low-density parity-check
(LDPC) code is a bipartite graph with a bit node rep-

resenting each codeword bit in the code and a check node
representing each parity-check equation. A check node is
connected to a bit node by a graph edge if the corresponding
codeword bit is included in that parity-check equation. The bit
node degree distribution of the code is denoted by

λ(x) = λ2x + · · · + λix
i−1 + · · · + λγmaxx

γmax−1,

where λi is the fraction of Tanner graph edges which emanate
from degree-i bit nodes. The fraction of degree-i bit nodes is
given by

ψi =
λi/i∑
j λj/j

.

The check degrees are similarly represented by

ρ(x) = ρ2x + · · · + ρix
i−1 + · · · + ρrmaxx

rmax−1.

A cycle in a Tanner graph is a sequence of connected nodes
which start and end at the same node in the graph and contain
no other nodes more than once. The length of the cycle is the
number edges it contains and the girth of a graph is the length
of its smallest cycle.

The degree distribution pair for a given rate LDPC code is
typically selected by optimizing the code threshold returned
by density evolution [1], a process which ignores error floor
performance. In this paper we show that by constraining the
optimization of the degree distributions, a tradeoff between
threshold and error floor performance can be achieved. The
resulting optimization process returns the degree distribution
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which gives the best threshold performance given some min-
imum requirement on the word error rate (WER) floor. We
show that on the binary erasure channel (BEC) and binary-
input additive white Gaussian noise channel (BIAWGNC) an
improvement in the bit error rate floor by up to four orders of
magnitude can be achieved by trading off a small reduction
in threshold.

II. CONSTRAINED DEGREE DISTRIBUTIONS

The BEC has provided a useful framework for understand-
ing the performance of finite-length LDPC codes (see e.g.
[2]), and many of the observations made using the BEC can
be usefully applied to more general channels.

On the BEC a transmitted symbol is either received cor-
rectly or completely erased with some probability ε. If only
one of the bits in a given parity-check equation is erased it can
be determined exactly by replacing it with the bit value which
satisfies the parity-check equation. Conversely, if more than
one bit in the parity-check equation is erased, no correction
can be made. A stopping set is defined as a set of code bit
nodes with the property that every check node connected to a
bit node in the stopping set is connected to at least two nodes
in the set. Thus, on the BEC, a codeword can be corrected if
and only if there are no stopping sets in the set of erased bits
[2].

For irregular LDPC codes the contribution to the WER is
dominated by the bit nodes of degree-2 in the code Tanner
graph, and so we calculate the expected number of stopping
sets in the subgraph T2 induced by the degree-2 bit nodes,
ignoring the contribution from stopping sets involving higher
degree nodes. Since the degree of all the bit nodes in T2 is 2,
a stopping set of size k in T2 is also a cycle of size 2k.

The expected number of cycles of size k in a length n code
is [3]:

Ek−cycles(Cλ(x),ρ(x), n) =
(λ2ρ

′(1))k

2k
+ O(n−1/3), (1)

and thus the average probability that a randomly chosen size-
v subset of the ψ2n degree-2 bit nodes in the ensemble
Cλ(x),ρ(x) is a stopping set is:

PSS(Cλ(x),ρ(x), v) =
(λ2ρ

′(1))v/2v + O(n−1/3)(
ψ2n

v

) .

We lower bound the word error rate on the BEC with erasure
probability ε by summing over the contribution of stopping
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sets of size s = 2, . . . , ψ2n in the ψ2n degree-2 bit nodes:

EWER(Cλ(x),ρ(x), n, ε) ≥
ψ2n∑
s=2

(
ψ2n

s

)
εsPSS(Cλ(x),ρ(x), s)

=
ψ2n∑
s=2

εs

(
(λ2ρ

′(1))s

2s
+ O(n−1/3)

)
, (2)

where εs is the probability of an erasure of size at least s
occurring. For asymptotically long codes,

lim
n→∞ EWER(Cλ(x),ρ(x), n, ε) ≥ lim

ψ2n→∞

ψ2n∑
s=2

(λ2ρ
′(1)ε)s

2s

= ln

(
1√

1 + λ2ρ′(1)ε

)
− (λ2ρ

′(1)ε)
2

. (3)

A similar expression for the bit error rate (BER) can be
found by noting that a stopping set of size s will cause s
uncorrected erasures following iterative decoding:

EBER(Cλ(x),ρ(x), n, ε) ≥
ψ2n∑
s=2

s

n

(λ2ρ
′(1)ε)s

2s
. (4)

If we consider randomly constructed LDPC codes from the
ensemble with degree distribution pair (λ(x),ρ(x)) and girth
g, then the expected error floor performance of the ensemble
will be dominated by stopping sets of size g/2 and we can
approximate the word error rate by Wg , where

Wg � (λ2ρ
′(1)ε)

g
2

g
. (5)

Thus to bound the ensemble degree distribution to obtain a
word error rate below Wg we propose to constrain the degree
distribution to satisfy:

λ2 ≤ E

ρ′(1)ε∗
, where E � (gWg)2/g, (6)

and ε∗ is the threshold value returned by density evolution.
Thus ε < ε∗ corresponds to the error floor region of the
WER curve, making ε∗ an ideal erasure probability at which
to evaluate (5). Note that setting E = 1 returns the stability
constraint for the BEC (see e.g. [1]) and the traditional
optimized degree distribution is returned.

Orlitsky et al. recently established in [4] that, provided ε is
below a certain threshold, the asymptotic average block error
probability of irregular LDPC codes is

1 −
√

1 − λ2ρ′(1)ε. (7)

The derivation of (7) uses the fact that stopping sets of
size-1 dominate the contribution to the WER of a randomly
chosen unconstrained Tanner graph. In practice, however,
LDPC codes are not constructed with repeated edges and so
do not contain size-1 stopping sets; thus the expression in
(5) is more useful for predicting the word error rate floor of
practical codes, as will be demonstrated in Section III.

On the BIAWGNC the factors affecting sum-product de-
coding performance are less straightforward to determine,
and we consequently model the performance of sum-product
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Fig. 1. The ensemble average performance on the BEC of length-10, 000
rate- 1

2
LDPC code ensembles without repeated edges, for degree distributions

from Table I. Shown is the word erasure rate (-.-), bit erasure rate (· · · ), W4

(- - -), and the BER bound from (4) (—).

decoding in the low noise region by that of maximum-
likelihood decoding, which we can bound using the code’s
minimum distance distribution and the union bound. As for the
BEC we restrict our attention to degree-2 nodes in the Tanner
graph and note that a codeword of weight d among degree-2
bit nodes is also a cycle of size 2d. Using this approach Di et
al. [3] have shown that the expected number of codewords of
weight k in a length n LDPC code with degree distribution
pair (λ(x),ρ(x)) is also given by (1).

Using the union bound for the BIAWGNC with variance
σ2, we have that the approximate WER contribution of errors
within bits corresponding to degree-2 nodes is

ψ2n∑
d=2

(λ2ρ
′(1))d

2d
Q

(√
d

σ2

)
, (8)

where

Q(x) =
1√
2π

∫ ∞

x

e−t2/2 dt ≤ 1
2
e−x2/2.

Considering only the impact of codewords with weight g/2
in graphs with girth g, we define Wg for the BIAWGNC by:

Wg �
(
e( −1

2σ2 )
)g/2 (λ2ρ

′(1))g/2

g
, (9)

and apply the constraint:

λ2 ≤ E

ρ′(1)
e1/2σ2

, where E � (gWg)2/g. (10)

Setting E = 1 returns the stability constraint for the BI-
AWGNC (see e.g. [1]) and the traditional optimized degree
distribution is returned.

III. RESULTS AND DISCUSSION

The constraints in (6) and (10) can be implemented quite
simply by scaling the relevant density evolution stability
condition with the required value of E, where E is a function
of both the desired constraint on the WER floor and the girth
of the code to be constructed. Table I gives degree distribu-
tion pairs found in this way for the BEC and BIAWGNC,
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TABLE I

LDPC DEGREE DISTRIBUTIONS

Rate- 1
2

(BEC) Rate- 1
4

(BIAWGNC) Rate- 1
2

(BIAWGNC)

E = 1 E = 0.99 E = 0.44 E = 0.02 E = 1 E = 0.19 E = 0.02 E = 1 E = 0.19 E = 0.02

W4 0.25 0.2475 0.05 1 × 10−4 0.25 0.009 1 × 10−4

W6 0.167 0.00114 1.31 × 10−6

λ2 0.3371 0.3496 0.1689 0.0066 0.4310 0.0872 0.0086 0.3282 0.2068 0.0082
λ3 0.2653 0.2093 0.5690 0.8490 0.2203 0.8650 0.9711 0.1581 0.6808 0.9689
λ4 0.0237 0.0192 0.0009 0.0033 0.0035 0.0242 0.0006 0.2275 0.1025 0.0077
λ5

λ6 0.0324 0.0032 0.0059
λ7 0.1587 0.0027 0.0110
λ9 0.3739 0.4219 0.2612 0.1411 0.2862 0.1067 0.0152
λ10 0.1541 0.0177 0.0028

ρ3 0.0005 0.0808 0.0118
ρ4 0.9983 0.8945 0.9332
ρ5 0.1299 0.0358 0.0071 0.0274 0.0012 0.0247 0.0550 0.02448 0.43217 0.35472
ρ6 0.0820 0.1357 0.3535 0.2930 0.35640 0.46110 0.09275
ρ7 0.7881 0.8285 0.6394 0.6796 0.61911 0.10673 0.55252

ε∗ / σ∗ 0.4837 0.4820 0.4591 0.4341 1.39 1.299 1.269 0.8966 0.8612 0.8419

WER from (7) 0.7220 0.8397 0.2495 0.0080
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Fig. 2. The ensemble average performance on the BIAWGNC of length-
10, 000 rate- 1

2
LDPC codes with degree distributions from Table I. Shown

is the word error rate (—) bit error rate (· · · ) and W4 (- - -).

respectively. We have used differential evolution, as described
in [5], to find the optimal degree distributions; thresholds for
the BIAWGNC are calculated using a Gaussian approximation
for density evolution from [6].

Figs. 1 to 3 show the simulated ensemble average perfor-
mance, using sum-product decoding, of codes with each of
these degree distributions. We see that the approximations for
WER, on both the BEC and BIAWGNC, are sufficiently accu-
rate that the proposed constraints in (6) and (10) produce the
desired effect, allowing a precise tradeoff between the thresh-
old and error floor performance to be made. By constraining
the degree-2 variable nodes an error floor improvement of up
to four orders of magnitude is possible. Further improvements
in error floor performance may be possible if the WER bounds
can be generalized so that the fraction of variable nodes with
degree greater than two are also constrained.
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Fig. 3. The ensemble average performance of girth ≥ 6 length-1000 rate- 1
4

LDPC codes with degree distributions from Table I. Shown is the word error
rate (—) bit error rate (· · · ) and W6 (- - -).
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