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Closed-form Generalized Power Correlation
Coefficient of the Hoyt Fading Signal

José Ricardo Mendes, Michel Daoud Yacoub, and Gustavo Fraidenraich

Abstract— Exact, closed-form, and general expressions of the
marginal and joint moments as well as of the correlation
coefficient of the instantaneous powers of two Hoyt (Nakagami-q)
signals are derived. All provided statistics are expressed as finite
sums of simple functions of the model parameters. The model
allows for environments where the variances of the quadrature
components of a signal are different from their counterparts of
the other signal. Some numerical results illustrate the generalized
power correlation coefficient provided in this work, simulations
support the theoretical results, and an approximation to the
envelope correlation coefficient of the Hoyt model is proposed.

Index Terms— Correlation coefficient, fading channel, Hoyt
distribution, power statistics.

I. INTRODUCTION

IN WIRELESS communications, the signal envelope fluc-
tuates randomly throughout the propagation environment

in a fast fading condition. Among the several distributions
used to describe the signal envelope, the Rayleigh, Rice, Hoyt
(Nakagami-q), and Nakagami-m constitute the most represen-
tative ones. In particular, the Hoyt model [1] considers the
in-phase and quadrature signal components as Gaussians with
zero means and arbitrary variances. For the case of identical
variances, the Hoyt distribution reduces to the Rayleigh one.

In recent years, different statistics concerning the Hoyt
model have been investigated [2]–[4]. However, to the best
of the authors’ knowledge, neither the envelope correlation
coefficient nor the power correlation coefficient of two Hoyt
signals has been reported in the literature. This work provides
an exact, closed-form, and general expression for the power
correlation coefficient. To this end, marginal and joint mo-
ments of arbitrary positive integer orders of the instantaneous
powers are derived. All these statistics are obtained for both
stationary1 and nonstationary environments.

It is widely known that, for the Rayleigh model [5] and for
the Ricean model [6], the power correlation coefficient is a
simple and accurate approximation to the envelope correlation
coefficient, whose exact mathematical treatment is rather com-
plicated. In fact, for the Rayleigh case, the well-known results
of the coherence bandwidth and the coherence distance (or
time) [5], two important parameters used as reference for the
frequency separation and space separation in diversity systems,
have been obtained from the power correlation coefficient
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1In this work, the term stationary environment designates the environment

where the variances of the quadrature components of one signal are equal to
their counterpart of the other signal.

instead of the envelope one. As will be seen in this work,
that approximation is also efficient for the Hoyt model.

Section II introduces the Hoyt model. Section III presents
the generalized power statistics. Section IV analyzes the
theoretical results, compares them with simulation ones, and
proposes approximations to the power correlation coefficient
for non-integer orders. Section V concludes this work.

II. SIGNAL MODEL

Consider two received signals, S1 and S2, and their respec-
tive envelopes, R1 and R2. The instantaneous power Wi (or
squared envelope R2

i ) of each signal is given by

Wi = R2
i = X2

i + Y 2
i i = 1, 2 (1)

where Xi and Yi are, respectively, the in-phase and quadrature
components of Si.

In the Hoyt model, the joint probability density function
(JPDF) of X1, Y1, X2, and Y2 is

fX1,2Y1,2(x1, y1, x2, y2) =
1
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where σ2
Xi

and σ2
Yi

are, respectively, the variances of
Xi and Yi, i = 1, 2, µ1 = E{X1X2}/(σX1σX2) =
E{Y1Y2}/(σY1σY2), µ2 = E{X1Y2}/(σX1σY2) =
−E{Y1X2}/(σY1σX2), and ρ =

√
µ2

1 + µ2
2 ≤ 1. The

coefficients µ1 and µ2 depend on the distance between the
reception points, on the frequency difference between the
transmitted signals, among others [5].

The present model is general and encompass as special
cases: (i) stationary environments, for which σX1 = σX2 and
σY1 = σY2 ; (ii) the Rayleigh distribution, for wich σXi

= σYi
,

i = 1, 2.

III. GENERALIZED POWER STATISTICS

In this section, the marginal moment, the joint moment, and
the correlation coefficient of arbitrary positive integer orders
of the instantaneous powers are derived. With the purpose of
expressing these statistics in more compact forms, they will
be presented in terms of the normalized instantaneous powers
Ŵi, which are given by

Ŵi =
Wi

E {Wi} =
X2

i + Y 2
i

σ2
Xi

+ σ2
Yi

i = 1, 2 (3)
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A. Power Marginal Moment

Using (1) and the independence of Xi and Yi, i = 1, 2, the
moment E {Wn

i } (n positive integer) can be calculated as

E {Wn
i } =

n∑
m=0

[( n

m

)
E

{
X2m

i

}
E

{
Y 2n−2m

i

}]
(4)

The moment E
{
Z2n

}
(n integer) of a Gaussian random

variable Z with zero mean and variance σ2
Z is well-known

E
{
Z2n

}
= (2n − 1)!!σ2n

Z (5)

where (−1)!! = 1, and (2n − 1)!! = 1 · 3 · ... · (2n − 1) for
n ≥ 1. Using (3), (4), and (5)

E{Ŵn
i } =

n!
2n(1 + ηi)n

n∑
m=0

[
(2m)!(2n − 2m)!
[(m)!(n − m)!]2

ηm
i

]
(6)

where ηi = σ2
Xi

/σ2
Yi

, i = 1, 2. In particular, for the Rayleigh
model, η1 = η2 = 1.

B. Power Joint Moment

From (3), the joint moment of the normalized instantaneous
powers can be expressed as

E{Ŵn1
1 Ŵn2

2 } =
1
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×
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(7a)

where n1 and n2 are positive integers, ηi = σ2
Xi

/σ2
Yi

, i = 1, 2,
and the coefficient CG is conveniently defined as

CG � E{X2m1
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Using (7b) and the definition of joint moment
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× fX1,2Y1,2(x1, y1, x2, y2)dx1dy1dx2dy2 (8)

The JPDF fX1,2Y1,2(x1, y1, x2, y2) is given in (2). After a
tedious procedure of manipulation, the authors have found an
exact and closed-form expression for CG
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2
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where n1, n2, m1, and m2 are non-negative integers satisfying
mi ≤ ni, i = 1, 2, �ν� is the greatest integer less than or equal
to ν, and �ν� is the smallest integer greater than or equal to
ν. From (9), CG is independent of σX1 , σY1 , σX2 , and σY2 .

C. Power Correlation Coefficient

By definition, the correlation coefficient of Ŵn1
1 and Ŵn2

2

(n1 and n2 positive integers) is

δn1,n2 =
E{Ŵn1

1 Ŵn2
2 } − E{Ŵn1

1 }E{Ŵn2
2 }√

V ar{Ŵn1
1 }V ar{Ŵn2

2 }
(10a)

where

V ar{Ŵni
i } = E{Ŵ 2ni

i } − E2{Ŵni
i } i = 1, 2 (10b)

In (10), the joint moment E{Ŵn1
1 Ŵn2

2 } is found through
(7a) and (9), whereas the marginal moments are obtained
directly from (6). Since n1 and n2 are arbitrary positive
integers, the power correlation coefficient provided here is
rather general. For the particular case in which n1 = n2 = 1

δ1,1 =
µ2

1(1 + η1η2) + µ2
2(η1 + η2)√

(1 + η2
1)(1 + η2

2)
(11)

It is important to mention that the statistical behavior of
the Hoyt signal power is symmetrical for 0 ≤ ηi ≤ 1 and
1 ≤ ηi ≤ ∞. Thus, the range 0 ≤ ηi ≤ 1 describes completely
the influence of ηi on the power statistics. Moreover, from (3)
and (10), it is readily seen that the correlation coefficient of
Wn1

1 and Wn2
2 is equal to the correlation coefficient of Ŵn1

1

and Ŵn2
2 . Therefore, δn1,n2 is also the correlation coefficient

of Wn1
1 and Wn1

2 .

IV. NUMERICAL RESULTS AND SIMULATIONS

In this section, we investigate, in both space domain and
frequency domain, the power correlation coefficient of the
Hoyt model for different values of n1 = n2 = n and
η1 = η2 = η (stationary environments). In order to verify
the correctness of the provided statistics, all of the theoretical
curves are contrasted with simulation results. We also propose
approximations to the correlation coefficient for non-integer
orders of the instantaneous powers.

As for the parameters µ1 and µ2, we shall assume the
physical model described by Jakes, in which [5]

µ1 =
J0(βd)

1 + (∆ωT )2
µ2 = −∆ωTJ0(βd)

1 + (∆ωT )2
(12)

where β is the phase constant, d is the distance between the
reception points, and ∆ω is the frequency difference between
the transmitted signals. For a mobile receiver, d = vτ , where
v is the mobile velocity, and τ is the time.

Throughout the following analysis, for clarity, we denote
• δn,n(d), δn,n(τ), δn,n(∆ω): space, time, frequency cor-

relation coefficient of the instantaneous powers;
• dc, τc, ∆ωc (coherence distance, time, bandwidth): space,

time, frequency separation above which the envelope
correlation coefficient is below a certain value.

A. Influence of n

Fig. 1 and Fig. 2 illustrate some theoretical curves (solid
lines) and simulation results (dotted points) of δn,n(d) and
δn,n(∆ω) for η = 0.5 and different values of n. It can be
noted that: (i) the smaller the n the stronger the correlation
coefficients; (ii) when n → ∞, both δn,n(d) and δn,n(∆ω)
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Fig. 1. Space correlation coefficient (∆ω = 0) for η1 = η2 = 0.5 and
some values of n1 = n2 = n.

tend towards zero but at the origin; (iii) the theoretical and
simulation results match excellently.

B. Non-integer Orders of the Instantaneous Powers

1) Non-integers ν > 1: From Fig. 1 and Fig. 2, δn,n is
close to δn+1,n+1. Thus, for a positive non-integer ν satisfying
n < ν < n + 1 (n ≥ 1 integer), the correlation coefficient of
W ν

1 and W ν
2 , namely δν,ν , can be well-approximated by the

linear interpolation δν,ν
.= (ν − n)(δn+1,n+1 − δn,n) + δn,n.

2) Envelope Correlation Coefficient (ν = 0.5): For the
Rayleigh model, which is a particular case of the Hoyt
model, the envelope correlation coefficient (δ0.5,0.5) is well
approximated by the power correlation coefficient (δ1,1) [5].
Based on this and on the proximity of two subsequent curves
of δn,n in Fig. 1 and in Fig. 2 (in particular, on δ1,1

.= δ2,2),
we conclude that the approximation δ0.5,0.5

.= δ1,1 is also
efficient for the Hoyt model.

C. Influence of η

Interestingly, for stationary environments (η1 = η2 = η),
µ1 and µ2 as provided in (12) produce a δ1,1(d) (as well as
dc and τc) independent of η: from (12) and ∆ω = 0, µ2 = 0;
hence, substituting µ2 = 0 and η1 = η2 into (11), δ1,1(d) = µ2

1

(independent of η).
Fig. 3 shows theoretical (solid lines) and simulation (dotted

points) results of δ1,1(∆ω) for different values of η. Note
that, since the Hoyt model is symmetrical for 0 ≤ η ≤ 1
and 1 ≤ η ≤ ∞, the frequency correlation coefficient and the
coherence bandwidth ∆ωc are maximal when η = 1 (Rayleigh
model). Again, an excellent agreement between the theoretical
and simulation results is observed.

V. CONCLUSION

This work has provided exact, closed-form, and general
expressions of the marginal and joint moments as well as
of the correlation coefficient of the instantaneous powers of
two Hoyt signals. All statistics have been expressed as finite
sums of simple functions of the model parameters. Simple
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Fig. 2. Frequency correlation coefficient (d = 0) for η1 = η2 = 0.5 and
some values of n1 = n2 = n.
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Fig. 3. Frequency correlation coefficient (d = 0) for n = 1 and some values
of η1 = η2 = η.

and accurate approximations to non-integer orders of the
instantaneous powers have been proposed. Theoretical results
have been supported by contrasting with simulation ones.
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