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Abstract—1In this paper, we multiple-input multiple-output
(MIMO) systems employing transmit antenna selection and or-
thogonal space-time block codes (OSTBCs) are not available. We
thus derive exact closed-form expressions for the BER of Gray-
coded M-ary one and two-dimensional amplitude modulations
when an OSTBC is employed and N transmit antennas out of
total L, antennas are selected for transmission. We also derive
tight closed-form approximate BER for M-PSK constellations.
Our BER expressions are valid for a frequency-flat Rayleigh
fading MIMO channel and can be evaluated without numerical
integration methods.

I. INTRODUCTION

Multiple antennas for transmitting and/or receiving data
effectively mitigates fading. Obtaining the benefits of mul-
tiple transmit antennas requires the use of special space-time
signaling schemes such as orthogonal space-time block codes
(OSTBCs), a class of easily decoded space-time codes that
achieve full diversity order [1], [2]. OSTBCs exist only for
certain numbers of transmit antennas, and this limits their
potential application. Decoding of OSTBCs is equivalent to
decoding a number of independent single-input single-output
data streams.

Antenna selection has been treated in some previous publi-
cation from two approaches. The first approach, concentrates
on the capacity maximization through antenna selection. The
focus of the other approach is on the minimization of the error
rate for practical systems. Recently, there has been increasing
interest in the combination of antenna selection and space-time
codes. Transmit antenna selection (TAS), where OSTBC signal
matrices are transmitted over a selected subset of transmit
antennas, is a practical technique for the realization of full
diversity [3]. Although receive antenna selection is a well
researched topic where various channel/correlation models
have been comprehensively treated (see [4]-[7] among many
others), analogous comprehensive results are limited for TAS;
e.g. a general, exact closed-form bit error rate (BER) analysis
of TAS is not available to date. Although the symbol error
rate (SER) of TAS is derived in [8], the formulas require
numerical methods. In [9], the SER of single TAS and receive
generalized selection combining (GSC) is derived. Exact BER
for selecting only two transmit antennas with BPSK signals
using the Alamouti code is derived in [10], [11]. The method
used in [10], [11] consists of finding the joint probability
density function (pdf) of two largest SNRs and convolving
them.
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In this paper, we provide general, closed-form BER expres-
sions for M-ary Pulse Amplitude Modulation (PAM) and M-
ary Quadrature Amplitude Modulation (QAM) constellations,
and an approximate BER expression for M-ary Phase Shift
Keying (PSK) with arbitrary N > 2 TAS employing OSTBCs.
The MGF of N largest instantaneous signal-to-noise ratios
(SNRs) for GSC in Nakagami fading is derived in [12]. Since
TAS involves selecting the N columns of the channel matrix
with the largest Frobenius norms, the results of [12] can be
utilized to the problem in hand. Our BER approximations
correctly reveal the full diversity order of the system.
Notation: The Frobenius norm of matrix A is denoted
by ||Allr and the Euclidean norm for vector h is
|h|| = (B2 + -+ thr)l/z. A circularly symmetric complex
Gaussian variable with mean  and variance o2 is denoted by

z ~CN(p,0?).

II. SYSTEM MODEL

We consider a MIMO system in a Rayleigh fading envi-
ronment with L; transmit and L, receive antennas. Channel
state information (CSI) is perfectly available at the receiver.
N (N < L;) transmit antennas out of L, are selected and
activated for the transmission of OSTBC signal matrices, while
the remaining transmit antennas are inactive. Let H € CL-* ¥
be a submatrix of the channel matrix H € C¥-*Lt H = [h;;]
where h;; ~ CN(0,1) is the channel gain between the ith
transmit and jth receive antenna. H consists of the channel
gains for the N selected transmit antennas and L, received
antennas. Suppose that h; (j = 1,2,..., L;) are columns of
the channel matrix H. The columns are sorted according
to their norms; Assume that [|h;, || > ... > |h;, || where
ir € {1,2, ..., Ly}. Thus, H is defined as

H = [h; h;, -

‘h (1)

With this selection criterion, we maximize the total received
signal power at the receiver. The received signals are expressed

as
E. ~
Y =4/—HX+V
N +

where Y € CE*T is the complex received signal matrix and
X € CN*T js the complex transmitted signal matrix, which is
a member of an OSTBC [2], [13]. V € CLr*T is the additive
noise matrix with independent and identical distributed entries

iN]'

(@)
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of CN(0, Np). The coefficient v/ F4/N ensures that the total
transmitted power in each channel use is E5 and independent
of number of transmit antennas.

Assume that @) symbols {s1,...,sg} with average energy
equal to one, chosen from an M-PAM or M-QAM constel-
lations, are transmitted by the transmission matrix X. Since
T symbol periods are necessary to transmit ) symbols, the
symbol rate R, of the STBC is defined as R; = Q/T.
When an OSTBC is used, the MIMO system is equivalent
to (@ independent single input single output (SISO) systems
defined as [2], [13]

B E, 1, ~
e (RSIIHII%> B e B

N
where v, ~ CN (O,RLHITIH%NO). We conclude that the
achievable SNR per bit in M-ary constellation is
E, 1

EWHHH% = cp|H||% €]

(p) =

where p = ﬁo is the SNR per channel and ¢ =
1/(RsN logy, M). Therefore, the antenna selection criterion
in (1), which selects /N transmit antennas, maximizes the
instantaneous SNR and thereupon minimizes the error rate.

Let v, = cpllhg||?, k = 1,2, ..., Ly, are the scaled norms of
the columns of H. In a flat Rayleigh MIMO channel, y; are
independent identically distributed (i.i.d.) chi-squared variable
with 2L, degrees of freedom and variance L,cp. The pdf of
vk 1s given by [14]

L.—1

v —v&/c
f’Yk ('Vk) = L £ e/ P

(cp)ir (L, — 11

and the cumulative density distribution (cdf) is given by [14]

w%=0 O

L.—1 k
- 1
Paw=1-c0 S g () w0 ©
k=0

In transmit antenna selection (1), the best N antennas with
the largest vy, are selected. Thus, the received SNR per bit (4)

can be written as N
o = ZV(k) (N
k=1

where () = cpl/h;, ||*>. The MGF of -, is given by [15]
L ° _N—
0,6 =2~ M) () [ ol
oo N
X [/ e (t)dt} dx
Ly oo er—le—’Jf/Cp
=(Ls— N —_—
w-(3) [ e
—N-1

Loy /o \k Ly
— e~ ®/cp — =
><<1 : Zk;<cp>>
k=0
<e
X

(cp)br &= k!

—z(s+$) L,—1 1 k

N
x
a7 | dx (8)
(s+ clp)LT_"> v

this is simplified in [12] as

Ly (ep) = . .
., (s) :N< ) Z a(Ly;iy,.yin—1)
' N) o)t
N-1 Li—N
Zk' Lt - N
e (MM )ew
k=1 =0

J
( J ) (cnj+Ly—1)!
X —
5 \no,np, 1) (cp)eniAnj

1 1
§)r+N-1 ' (é(N‘*‘]’) + Ns)ens tLr } )]

1
(c7)+
where a(L,;i1,...,ix—1) is the coefficient of z{ .. x?{}f | in
expression
Lo—1 Le—1 _ _L.—1
(z1+ 224+ +2aN) (z2+ +N) TN

and B is the set of all combinations of nonnegatlve inte-
gers of ng,ny,...,ng,.—1 such that Zk 0 nk = J, tnj =
L kg, Ay = TTE25 (kD)™ and 7= S0 i

III. BER ANALYSIS OF M-ARY CONSTELLATIONS

A. Exact BER for M-ary PAM

We first derive the BER for M-ary PAM with antenna
selection and OSTBCs using Gray mapping. In an AWGN
channel, the exact BER of the n-th bit is given by [16]

Py (s p) ZB o(Divwlp)  (10)
where
by — (1_2%)1\4_1 (11
B = (-1l (2”1 - {121\7141 + ;J) (12)
D = (i) ot (13)

Thus, to obtain the average BER, we take the expectation with
respect to the channel statistics:

Pur(n;p) = % Bi&gz {Q (D ’Yb(ﬂ))}
1=0
9 kn 1 w/2 D2
:M;BZW/O t ()0 0

where Q(z) = 1 Oﬂ/z exp (7%) de.

The exact average BER of an OSTBC with M-PAM is
therefore given by

logy, M

ZPan

n=1

Pr(p) (15)
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Therefore, the BER can be obtained from (9) and (14) as

logo Mk,
2N Li\ (cp)~ErN
PM(p):MloggM(N> L, — DN 2. 2B
n=1 =0
- L,—N :
Z a(Ly;iy, N1 H ( v )(—1)1
i1, iN -1 k=1 j=0 J

« Z j (an —+ Lr — 1)'
o, eesmig, 1) (ep)oms T ErF NI A

neB

cpD? NcpD?
I , —:r+N—-1,¢c,;+L,) p. (16
( 2 N+J) : (1o
and
sin“ 6 sin“ 0

1 (/2 gin2 M/ gin? "
It ¢y, _1 do
(1, c25ma, m2) W/OW (sin2 0+ Cl) <sin2 0+ Cz) a7

is given in [17, pp. 162].

B. Exact BER for M-ary QAM

Note that a rectangular or square QAM constellations can be
composed to two independent PAM constellations: /-ary PAM
for the in-phase component and J-ary PAM for the quadrature
component, where M = I x J. Thus, the exact average BER
of M-QAM is given by

log, I log, J

ZPmp +ZPJmp

The result for transmit diversity and one receiver antenna
(L, = 1) can be simplified as

Py(p)= . (18)

log,(1.7) IJ

I Em—— — LﬁN L 9
(N=1)!'(1+cps)N—1 o N(1+cps)+j
where we have used Z 0 ( )(pizj = p(pﬂ)rﬁ!,(ﬁn) to
convert the sum to the product (19). Considering that
5 logo Mk,

plirgc Py (p)p™t = Mlog, M nz:l ZZ; D2L1

x NLt—zlv+1CL,, . th—l((LQtLi I)!l()fv el
we can approximate (16) as

5 logs Mk, 1
Pr(p) = WE’QM nzl ; DzL, NLi—N+1.L;
(2L — 1)!

1\ X
ol (p) ., p>1 (21

which clearly indicates a full diversity order of L; at high
SNRs for N transmit antenna selection of an L; X 1 system.

X SL=1(L, — 1)I(N —

C. Approximate BER for M-ary PSK

A tight approximation for the BER of the coherent M -ary
PSK in AWGN channels is given by [18]

2

PAWGN ~
(p) = max(log, M, 2)
max(M/4,1)

DY Q<\/2sm Ww(p)) (22)

Again, using the expression for Q-function and same deriva-
tion steps from (14) to (16)

Pur(p) =€ [Pr N (p)] =

max(M/4,1)

X Z Ex

max(log, M, 2)
' lQ (\/2 sin? 222 DT Ml)wvb(p))]
=1 )

~ max(log, M, 2)

max M/4 1) ﬂ,/Q sin 2 (2i—1)w
- M de,
/ P < sin? )
(23)

an approximate expression for the average BER of OSTBC
can be found similarly as

2

N max(M/4,1)

Ly
P, ~
m(p) = s 1og2M 2) (N) (Lr ) ] 2

N—-1 . —N
ig! L;—N .
> a(Lyyin, cyin-1) k’; Z ( ¢ )(_1)3

i1, iN—1 k=1 j=0 J
j i + Ly — 1)
" {%:3 (”07 j nLT—1> (cp)gf";:;”” ‘>1Anj
I(Ci1,Cio;m+ N —1,¢05 + Lr)}. (24)
where
C;1 = cpsin® % (25)
Cin = (]ZVNJ::? ) sin? ;41)” (26)

I'V. NUMERICAL RESULTS

In this section, we consider the orthogonal design proposed
in [2], [13], namely the rate 3/4 with 3 < L; < 6 transmit
antennas. Thus, to use this orthogonal design, we need to select
N = 3 transmit antennas. Fig. 1 compares the exact expression
(16), the approximation (21), and the Monte Carlo simulation
results for the system with L, = 1 receive antennas, all using
16-QAM signal constellations. Note that (16) asymptotically
approaches (21), which is a tight bound of (16) at high SNRs.
Fig. 2 shows the exact BER for (L;; N, L,.) systems, where
OSTBC is tranmitted over N selected antennas of L; available
transmit antennas. L, is the number of receive antennas in the
system. Again, 16-QAM signal constellation is used to show
the general forms of BER expressions.
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V. CONCLUSION

In this paper, we have investigated the performance of TAS
and OSTBCs. The exact BER for M-PAM and M-QAM and
an approximate BER for M-PSK were derived. Our results
are sufficiently general to handle an arbitrary number of
antennas, unlike the previous results. Moreover, we directly
derived the BER, not via the symbol error probability. As
expected, we find that this scheme achieves full diversity order
asymptotically (i.e., L; not N), as if all the transmit antennas
were used.
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