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Capacity of Complexity-Constrained
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Abstract— An interference-limited noise-free CDMA downlink
channel operating under a complexity constraint on the receiver
is introduced. According to this paradigm, detected bits, obtained
by performing hard decisions directly on the channel’s matched
filter output, must be the same as the transmitted binary inputs.
This channel setting, allowing the use of the simplest receiver
scheme, seems to be worthless, making reliable communication
at any rate impossible. We prove, by adopting statistical me-
chanics notion, that in the large-system limit such a complexity-
constrained CDMA channel gives rise to a non-trivial Shannon-
theoretic capacity, rigorously analyzed and corroboratedusing
finite-size channel simulations.

Index Terms— Capacity, CDMA, complexity, statistical me-
chanics, Hopfield model.

I. I NTRODUCTION

D IRECT-SEQUENCE spread-spectrum code-division
multiple-access (CDMA) is used extensively in modern

wireless communication systems and serves preeminently
in commercial cellular networks. Investigation of reliable
(i.e. errorless) communication via the CDMA channel is a
long-standing and productive research topic (e.g., [1]).

A typical investigation of a CDMA channel often assumes
an upper bounded transmission power, but no restrictions on
complexity are imposed. In the era of ubiquitous and pervasive
communications, in, for example, indoor and personal area
networks (PAN), there is an emerging interest in a complemen-
tary scenario. According to this scenario, the CDMA system
operates in a high signal-to-noise ratio (SNR) regime (thus
power limitation is less crucial), but is highly restrictedby
its receiver’s signal processing complexity. For instance, this
is the case in complexity-limited (rather than noise-limited)
CDMA downlink, where the simplest mobile receiver is to
be used. Such a trivial receiver requires that detected bits,
sliced at the output of the channel’s matched filter, must be the
same as the transmitted binary inputs. Formerly, there has been
no examination of the information-theoretic characteristics of
CDMA channels in this setting, being especially applicable
for the downlink.

In this contribution, we compute the Shannon capacity
of such a complexity-constrained CDMA channel with bi-
nary signaling, random spreading and arbitrary user load.
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For this purpose, we borrow analysis tools from equilibrium
statistical mechanics, especially the Hopfield model of neural
networks [2], [3]. The achievable asymptotic information rates
of such naive CDMA channels, which may seem worthless
from an information-theoretic point of view, are found to result
in valuable rates, comparable to those achieved by using the
optimal multi-user receiver.

II. CHANNEL MODEL

Consider a noiseless synchronous CDMA downlink ac-
cessingK active users via the mutual channel in order to
transmit their designated (coded) information binary symbols,
xk = ±1, wherek = 1, . . . ,K. Each transmission to a user is
assigned with a binary signature sequence (spreading code)
of N chips, sµ=1...N

k=1...K = ±1. Assuming a random spread-
ing model, the binary chips are independently equiprobably
chosen, and the deterministic chip waveform has unit energy.
The cross-correlation between users’ transmissions isρki ,
1/N

∑

µ s
µ
ks

µ
i . The received signal is passed through the user’s

matched filter. Thus, the overall channel input-output relation
is described by

yk = xk +
∑

i6=k

ρkixi, (1)

where thek’th user matched filter output,yk, is the designated
bit, xk, corrupted by an interference term. This interference
term is composed of a summation over (cross-correlation)
scaled versions of all other users’ bits. The set of all cross-
correlationsρki is hereinafter denoted byρ. In the following
asymptotic analysis, we assume thatK → ∞, yet the system
load factorβ , K/N , α−1 is kept constant, and that the
information rate is the same for all users,i.e. Rk = R.

We want to convey information reliably through the chan-
nel (1) under a low-complexity constraint on the user receiver.
According to this constraint, detected bits,x̂k, obtained by
performing hard decisions directly on the channel’s matched
filter output samples, must be the same as the transmitted
bits. Explicitly, xk ≡ x̂k = Sign(yk), where Sign(·) is the
trivial sign function. Under the constraints outlined above it is
clear that not all combinations of input symbols will resultin
errorless communication. Thus, the capacity of the channelcan
be obtained by evaluating the number of codewords that ensure
errorless detection. Following, we prove that this complexity-
constrained CDMA channel setting yields non-trivial capacity.

III. C APACITY

A binary codewordxc , {xc
1
, . . . , xc

K}, composed of all
K users’ bits at a given channel use, for which the channel
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constraints hold, satisfies the condition
∫ ∞

0

K
∏

k=1

dλkδ(yk−λkx
c
k) =

∫ ∞

0

K
∏

k=1

dλkδ(αyk−λkx
c
k) = 1,

whereδ(·) is the Dirac delta function. Let the random variable
N(K,β, ρ) denote the number of codewords,i.e.

N(K,β, ρ) ,

∫ ∞

−α

∏

k

dλk

∑

x

∏

k

δ
(

∑

i6=k

αρkixi − λkxk

)

,

where
∑

x
corresponds to a sum over all the possible val-

ues of the transmitted input symbols. Assuming equal user
information rates, the corresponding asymptotic capacityof the
channel is defined [4], in bit information units, asC∞(β) ,
limK→∞ log

2
N(K,β, ρ)/K. According to the self-averaging

property [5], in the large-system limit,K → ∞, the number
of successful codewordsN(K,β, ρ) is equal to its expectation
with respect to (w.r.t.) the distribution ofρ, i.e.

lim
K→∞

N(K,β, ρ) = N (β) = lim
K→∞

∫ ∞

−α

∏

k

dλk (2)

×
∑

x

〈

∏

k

δ
(

∑

i6=k

αρkixi − λkxk

)

〉

ρ

,

whereN (β) and < · >ρ denote the average and averaging
operation, respectively. Representing the delta functionby
the inverse Fourier transform of an exponent and substituting
xkωk for the angular frequency of the Fourier transformωk,
expression (2) can be rewritten as

N (β) = lim
K→∞

∫ ∞

−α

∏

k

dλk
1

(2π)K

∫ ∞

−∞

∏

k

dωk

×
∑

x

exp
(

j
∑

k

ωkλk

)

· E, (3)

wherej ,
√
−1 and

E ,

〈

exp
(

− j
∑

i6=k

1

K

N
∑

µ=1

sµks
µ
i xixkωk

)

〉

ρ

.

The expectationE can be also written as

E = exp (jα
∑

k

ωk)

×
〈

exp
(

− j

K

∑

µ

(
∑

k

sµkxkωk)(
∑

k

sµkxk)
)

〉

ρ
. (4)

Using a transformation [6, eq. (2.14)], the expectation becomes

E = exp (jα
∑

k

ωk)

∫ ∞

−∞

∏

µ

daµ
(2π/K)1/2

×
∫ ∞

−∞

∏

µ

dbµ
(2π/K)1/2

exp
(

j
K

2

∑

µ

(a2µ − b2µ)
)

× exp
(

∑

k,µ

log
(

cos(ck,µ)
)

)

, (5)

whereck,µ , 1√
2

(

ωk(aµ + bµ) + (aµ − bµ)
)

. Since
∑

k s
µ
kxk

in (4) is O(
√
K) for an overwhelming majority of code-

words, for the expectationE to be finite, aµ and bµ must

be O(1/
√
K). Hence, expanding thelog

(

cos(·)
)

term in
exponent (5) and neglecting terms of order1/K and higher,
we get

E = exp (jα
∑

k

ωk)

∫ ∞

−∞

∏

µ

daµ
(2π/K)1/2

×
∫ ∞

−∞

∏

µ

dbµ
(2π/K)1/2

exp
(

j
K

2

∑

µ

(a2µ − b2µ)
)

× exp
(

− 1

4

∑

k,µ

ĉk,µ

)

, (6)

whereĉk,µ ,
(

ω2

k(aµ + bµ)
2 + 2ωk(a

2

µ − b2µ) + (aµ − bµ)
2
)

.
Now, the multi-dimensional integral (6) is solved using the
following mathematical recipe: New variables are introduced

a ,
1

2α

∑

µ

(aµ + bµ)
2, b ,

j

2α

∑

µ

(a2µ − b2µ) + 1. (7)

Equations (7) can be reformulated via the integral represen-
tation of a delta function using the corresponding angular
frequenciesA andB, respectively,

∫ ∞

−∞

da dA

2π/Kα
exp

(

jKA(αa−
∑

µ

(aµ + bµ)
2

2
)
)

= 1,

∫ ∞

−∞

db dB

2π/Kα
exp

(

jKB(αb− j
∑

µ

(a2µ − b2µ)

2
− α)

)

= 1.

Substituting these (unity) integrals into the expectationexpres-
sion (6) and rewriting it usinga andb, the integrations overaµ
and bµ are decoupled and can be performed easily. Next, for
the asymptoticsK → ∞, the integration over the frequencies
A andB can be performed algebraically by the saddle-point
method [5]. According to this method, the main contribution
to the integral comes from values ofA andB in the vicinity
of the maximum of the exponent’s argument. Finally, theE

term boils down to

E =

∫ ∞

−∞

da db

4π/Kα
exp

(

Kα(b− 1

2
+

(1− b)2

2a
+

1

2
log a)

)

× exp
(

− 1

2
αa

∑

k

ω2

k + jαb
∑

k

ωk

)

. (8)

Substituting the expectation term (8) back in (3), the integrand
in the latter becomes independent ofx, therefore the

∑

x

can be substituted by multiplying with the scalar2K , and the
resultingω dependent integrand is a Gaussian function. Thus
performing Gaussian integration and exploiting the symmetry
in theK-dimensional space, we get

N (β) = lim
K→∞

1

πK

∫ ∞

−∞

da db

4π/Kα

× exp
(

Kα
(

b− 1

2
+

(1− b)2

2a
+

1

2
log a

)

)

(9)

× exp

(

K log
(

√

2π

αa

∫ ∞

−α

dλ exp
(

− (αb + λ)2

2αa

)

)

)

.

Using the rescaling(αb + λ)/
√
αa → λ, the integral (9)

becomes

N (β) = lim
K→∞

∫ ∞

−∞

da db

4π/Kα
exp

(

Kg(a, b, β)
)

, (10)
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where the functiong(a, b, β) is defined by

g(a, b, β) ,
1

β

(

b− 1

2
+

(1− b)2

2a
+

1

2
log a

)

+ log
(

2Q(t)
)

.

The definitions of the auxiliary variablet ,
√
α(b − 1)/

√
a

and the error functionQ(x) , 1/
√
2π

∫∞
x

dy exp (−y2/2) are
used. Again, forK → ∞, the double integral in (10) can be
evaluated by the saddle-point method. Hence, we find

N (β) ∝ lim
K→∞

exp
(

Kg(a∗, b∗, β)
)

, (11)

where a∗ and b∗ are found by the saddle-point conditions,
which yield the following equations

∂g(a, b, β)

∂a
= β−1

( (1− b)2

a
− 1

)

+ t
Q′(t)

Q(t)
= 0,

∂g(a, b, β)

∂b
= β−1

(

1− 1− b

a

)

+
1√
aβ

Q′(t)

Q(t)
= 0.

The operatorQ′ denotes a derivative ofQ w.r.t. its argument.
One then finds that this set of equations is satisfied byb∗ = 0
and

a∗ = β−1/
(

β−1 +
1√
a∗β

Q′(t∗)

Q(t∗)

)

, (12)

where t∗ , −1/
√
a∗β. This saddle-point condition’s fixed-

point a∗ can be found iteratively, and it always converges in
the examined model [3].

Finally, substituting (11) the asymptotic capacity, in natper
symbol per user, is now easily obtained

C∞(β) = g(a∗, b∗, β) = log
(

2Q(t∗)
)

+
1

β

(

b∗ − 1

2
+

(1− b∗)2

2a∗
+

1

2
log a∗

)

, (13)

which forms our pivotal result. In section IV we further dis-
cuss the theoretical results and compare them with computer
simulations of the complexity-constrained CDMA channel.

IV. RESULTS

Fig. 1 displays the asymptotic capacityC∞ (13), obtained
by solving iteratively the saddle-point condition (12), asa
function of the loadβ. Interestingly, for smallβ . 0.1 values
the trivial 1 bit upper bound (of an optimal receiver,i.e. matrix
inversion) is practically achieved by this simple hard decision
operation. Nevertheless, even for higher non-trivial system
load such a complexity-constrained CDMA setting still yields
substantial achievable information rates. Note, in passing, that
for heavily overloaded system (i.e. β → ∞) the capacity
curve decay coincides with Hopfield model’s capacity (see [2,
eq. (12)] for an analytical approximation of this capacity decay
to zero.)

In order to validate the analytically derived asymptotic
capacity C∞(β), we evaluated the capacityCK(β) of a
CDMA downlink channel with large, yet finite number of users
K, using exhaustive search simulations. The number of suc-
cessful binary codewords, maintaining the channel constraints,
was obtained by examining all2K possible codewords. The
average logarithm of the counted number, normalized by the
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Fig. 1. Asymptotic capacityC∞ (solid line), in terms of bit/symbol/user,
as a function of loadβ. Also drawn is the finite-size simulation-averaged
capacityCK for K = 25 (empty squares). Vertical bars stand for standard
deviation in simulation results.

number of usersK, gives the capacityCK . Fig. 1 presents the
capacity obtained by simulations forK = 25. As can be seen,
the empirical capacity for finiteK deviates only slightly from
the analytically obtained asymptotic capacity. These results
substantiate the analysis of the complexity-constrained CDMA
channel.

V. CONCLUDING REMARKS

We evaluated the asymptotic capacity of a CDMA downlink
channel model requiring only minimal signal processing at the
receiver, thus suitable for interference-limited systemswith
low-complexity constrained mobile equipment. Interestingly,
we found a range of non-trivial achievable rates. Accordingto
these findings, at a given channel use a fraction of the users,
equal toC∞ (in bit), can receive its designated information
with rate 1, while the transmissions to the rest of the users
ensure reliable communication. Determining these redundant
transmissions in a diagrammatic manner (rather than via brute-
force enumeration, which becomes infeasible for largeK)
remains an interesting open research question.
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