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Transmit Antenna Shuffling for Quasi-Orthogonal

Space-Time Block Codes With Linear Receivers
Yi Yu, Student Member, IEEE, Sylvie Kerouédan, and Jinhong Yuan, Member, IEEE

Abstract— In this letter, we propose a transmit antenna shuf-
fling scheme for quasi-orthogonal space-time block codes (QO-
STBCs). We show that by adaptively mapping the space-time
sequences of the QO-STBC to the appropriate transmit antennas
depending on the channel condition, the proposed scheme can
improve its transmit diversity with limited feedback information.
The performance of the scheme with various numbers of shuffling
patterns is analyzed. The bit error probability of the schemes is
evaluated by simulations. It is demonstrated that with the linear
zero-forcing (ZF) and the minimum mean squared error (MMSE)
receivers, the closed-loop QO-STBC using two feedback bits can
achieve almost the same performance as the ideal 4-path diversity
and it is about 4-5 dB better than the open loop schemes.

Index Terms— QO-STBCs, antenna shuffling, linear receivers.

I. INTRODUCTION

O
VER the past few years, multiple-input and multiple-

output (MIMO) systems were demonstrated to provide

a potential capacity gain compared to single-antenna commu-

nication systems [1]. In order to approach the capacity of

MIMO systems, space-time coding (STC) has received the

significant amount of attention. In [2], Alamouti introduced

a very simple scheme which allows the transmission from

two transmit antennas with the same data rate as on a single

antenna but increasing the diversity at the receiver from one

to two in flat fading channels. However, it is demonstrated

that the complex orthogonal full rate design, offering full

diversity, was limited to the case of two transmit antennas.

When three or four transmit antennas were considered, the

maximum symbol transmission rate of the complex orthogonal

STBCs with the linear processing was 3/4 [3]. Due to this

drawback, various quasi-orthogonal STBCs (QO-STBCs) have

been proposed to achieve a full rate (R=1) for more than 2

transmit antennas at the expense of loosing the diversity gain

and increasing the decoding complexity [4]-[6].

Recently, a lot of researches have been put into designing

the STBCs with full rate and full diversity for four transmit

antennas [7]-[9]. For open-loop communication systems, the

optimum constellation rotation proposed for QO-STBCs with
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Fig. 1. The baseband representation of the proposed closed-loop system.

different modulation schemes is the one of good diversity

improvement approaches [7]. For closed-loop communication

systems, Milleth et al. has proposed a quantized phase-only

feedback method for QO-STBCs in [8]. The technique that we

present here has a slightly higher computational complexity

than [9]. While [9] used orthogonal Alamouti blocks to build

the larger STBCs, here, we have an alternative approach by

starting with the quasi-orthogonal design of [4].

In this letter, a transmit antenna shuffling (TAS) scheme is

proposed for various QO-STBCs using four transmit antennas.

The optimum antenna shuffling pattern can be selected to im-

prove the transmit diversity with limited feedback information

during the whole signal transmission. Linear receivers such as

zero-forcing (ZF) receivers and minimum mean squared error

(MMSE) receivers are adopted for the proposed closed-loop

QO-STBC. The bit error ratio (BER) performance is evaluated

for our scheme.

II. THE QO-STBC FOR FOUR TRANSMIT ANTENNAS

In this section, Jafarkhani’s QO-STBC with four transmit

antennas is described in order to facilitate the introduction of

the new scheme. The (4 × 4) QO-STBC is given by

CJ =

[
A12 A34

−A∗

34
A∗

12

]
(1)

where A12 and A34 are the two (2×2) building blocks based

on the Alamouti scheme of two transmit antennas,

A12 =

[
x1 x2
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2
x∗

1

]
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]
. (2)
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Fig. 2. Six antenna shuffling patterns for Jafarkhani’s QO-STBC.

where the channel coefficients h1, h2, h3 and h4, are modeled

as independent zero mean complex Gaussian random variables

with variance 0.5 per real dimension. Applying the matched

filtering at the receiver with HH

J
matrix, we obtain a Gram-

mian matrix

GJ = HH

J HJ = h2

[
I2 0
0 I2

]

︸ ︷︷ ︸
DJ

+h2

[
0 WJ2

−WJ2 0

]

︸ ︷︷ ︸
VJ

(4)

where h2 =
∑

4

i=1
|hi|

2 indicates the total channel gain for the

four transmit antennas, W can be interpreted as the channel

dependent interference parameter, given by W = 2Re(h1h
∗

4
−

h2h
∗

3
)/h2, I2 is a two-dimensional identical matrix and J2 is

a matrix given by

J2 =

[
0 1

−1 0

]
. (5)

As presented in (4), the Grammian matrix, GJ , can be divided

into two components, which are the channel gain matrix, DJ ,

and the interference matrix, VJ ,

GJ = DJ + VJ . (6)

It is well known that the presence of the channel dependent

interference, W , in VJ can cause the performance degradation

in contrast with the optimal orthogonal design. Therefore, in

order to achieve the ideal 4-path diversity, GJ should approach

DJ as close as possible, which means the absolute value of

W in VJ should be as small as possible. The effect of W in

VJ is explained in [6]. To improve the transmit diversity, we

present an efficient antenna shuffling scheme for QO-STBCs

to alleviate the interference by using two feedback bits.

III. THE PROPOSED TAS SCHEME FOR THE QO-STBC

The block diagram of the proposed closed-loop QO-STBC

with four transmit antennas and one receive antenna is de-

picted in Fig. 1. We assume that the channel state information

(CSI) can be estimated at the receiver. Considering that the

channel interference parameter, W , strongly depends on the

equivalent channel matrix, HJ , we can implement an antenna

shuffling structure between the QO-STBC encoder and four

transmit antennas to minimize the channel interference term

VJ in (6). This is achieved by adaptively mapping the space-

time sequences from the QO-STBC encoder to the appropriate

transmit antennas depending on the channel condition such

that the channel interference parameter W is minimized.

In Fig. 2, we show six different antenna shuffling patterns

for Jafarkhani’s QO-STBC. For example, the pattern in Fig. 2

TABLE I

THE AVERAGE INTERFERENCE FOR VARIOUS SHUFFLING PATTERNS n

n 1 2 3 4 5 6

E[|W n

s
|] 0.375 0.235 0.173 0.136 0.113 0.096

(b) is denoted by (1A, 2, 4, 3), which means the four rows of

the QO-STBC will be transmitted from antenna 1, 2, 4, and

3, respectively. The pattern in Fig. 2 (f) is (1B, 3, 4, 2) rep-

resenting that the four rows of the QO-STBC are transmitted

from antenna 1, 3, 4, and 2, respectively. However, signals for

the antenna 1 have a 180o-phase shift before transmission. For

these six cases, we can obtain the values of W as
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(7)

where h2 = |h1|
2 + |h2|

2 + |h3|
2 + |h4|

2.

In order to achieve the optimum performance, the QO-

STBC selects an antenna shuffling pattern to minimize |W |.
Now we analyze how the antenna shuffling can reduce the

channel interference. Since the interference parameter W is a

random variable, we here consider the statistic average of the

interference variable W for using various numbers of shuffling

patterns, n, where n ∈ [1, 6]. It is obvious that choosing n = 1
means we always use a fixed antenna mapping pattern, or there

is no antenna shuffling, and choosing n = 6 means that we

can use all six antenna shuffling patterns. Let us denote the

statistic average of the interference variable W by E[|Wn
s |]

with n shuffling patterns. We have

E(|Wn

s |) =

∫
1

0

n[1 − FW (w)]n−1fW (w)wdw (8)

where fW (w) is the probability density function (PDF) of W ,

and FW (w) is the accumulative density function (CDF) of W .

The fW (w) is given by [6]

fW (w) =
3

2
(1 − w2). (9)

Substituting (9) into (8), we obtain the average interference for

various shuffling patterns n. The results are shown in Table I.

From Table I, we see that with n = 4 antenna shuffling

patterns, the average interference W can be reduced by 64%

relative to the case without antenna shuffling n = 1. Further
2
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Fig. 3. TAS scheme for the (4 × 4) QO-STBC with ZF receivers.

increasing the shuffling patterns from four to six can reduce

the interference by another 10.4%. However, this requires 3-

bit feedback rather than 2-bit feedback during each chan-

nel coherence time interval. For practical reasons, here we

consider 2-bit feedback scheme with four antenna shuffling

patterns. It is well known that the QO-STBC using different

patterns have similar performance because the same code

matrix is used during the whole signal transmission. Therefore,

arbitrary four antenna shuffling patterns can be used. For the

convenience, we can employ the first four patterns in Fig. 2,

(1A, 2, 3, 4), (1A, 2, 4, 3), (1A, 3, 4, 2) and (1B, 2, 3, 4) in this

letter. In general, for four transmit antennas, we always find

six shuffling patterns with different |W | for any QO-STBCs.

IV. SIMULATION RESULTS

In this section, we evaluate the error performance of the

proposed scheme in uncorrelated quasi-static flat fading chan-

nels. For the closed-loop system with four transmit antennas

and one receive antenna, we have simulated the BER against

Eb/No using QPSK symbols leading to an information rate

of 2 bits/sec/Hz. Each frame consists of 2000 symbols in our

simulation. In Fig. 3, we show the performance of the pro-

posed closed-loop QO-STBC with ZF receivers. The proposed

QO-STBC using four antenna shuffling patterns can achieve

almost the same diversity order as the O-STBC [3]. This is

evident from the slope of curves in the high Eb/No region. As

shown in Fig. 3, at the BER is 10−4, the proposed scheme with

2-bit feedback can get 1.5 dB and 5 dB over that with 1 bit

feedback and the QO-STBC[4] with ZF receivers, respectively.

Furthermore, the system performance with the imperfect CSI

is investigated. A pilot sequence with a length of 8 symbols

is inserted at the beginning of each frame for the channel

estimation. The simulation results show that due to imperfect

channel estimation, the performance of the closed-loop QO-

STBC using four TAS patterns is degraded by about 1.8 dB

compared to the case with the ideal CSI at the BER of 10−4.

Fig. 4 shows the simulation results for the QO-STBC with

MMSE receivers. At the BER of 10−4, the code using four

TAS patterns gets about 4 dB gain over the QO-STBC [4]
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Fig. 4. TAS scheme for the (4 × 4) QO-STBC with MMSE receivers.

with MMSE receivers. We further compare our results with

the scheme described in [8]. Simulations show that at the BER

is 10−5, the QO-STBC using four TAS patterns gets about 2.1

dB over that with 2-bit feedback [8]. It is worth pointing out

that our scheme has a lower complexity since it requires less

bits to achieve the ideal 4-path diversity than the design in

[8].

V. CONCLUSION

In this letter, we propose a closed-loop QO-STBC with

TAS. ZF receivers and MMSE receivers are adopted in this

system to obtain a lower decoding complexity. It is demon-

strated that the QO-STBC with four antenna shuffling patterns

can achieve almost the same performance of the ideal 4-

path diversity. In particular, the proposed TAS scheme can

be designed for any QO-STBCs to enhance the performance

with a limited amount of feedback information.
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