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Gradient Projection Decoding of LDPC Codes
Christos Kasparis and Barry G. Evans

Abstract— A new practical method for decoding Low-Density
Parity Check (LDPC) codes is presented. The followed approach
involves reformulating the parity check equations using non-
linear functions of a specific form, defined over �ρ, where ρ
denotes the check node degree. By constraining the inputs to
these functions in the closed convex subset [0, 1]ρ (“box” set) of
�ρ, and also by exploiting their form, a multimodal objective
function that entails the code constraints is formulated. The
gradient projection algorithm is then used for searching for a
valid codeword that lies in the vicinity of the channel observation.
The computational complexity of the new decoding technique is
practically sub-linearly dependent on the code’s length, while
processing on each variable node can be performed in parallel
allowing very low decoding latencies. Simulation results show
that convergence is achieved within 10 iterations, although some
performance degradations relative to the Belief Propagation (BP)
algorithm are observed.

Index Terms— LDPC, decoding, non-linear, gradient, projec-
tion.

I. INTRODUCTION

THE rediscovery of Low Density Parity Check (LDPC)
codes1 by MacKay and Neal [2,3] (as a class of error cor-

recting codes that achieve near Shannon-bound performances
and allow manageable decoding complexities), has sparked
research interest towards new powerful and efficiently encod-
able LDPC codes (e.g. [8]), and also towards new decoding
algorithms with attractive performance-complexity features.
With increasing numbers of practical communication systems
employing LDPC codes, the search for efficient codes and
decoding algorithms still attracts significant research interest.
The current paper addresses the latter topic.

Focusing on existing types of decoding algorithms, the
Belief Propagation (BP) algorithm [1,3,4] is an iterative
technique for computing (approximate) marginal posterior
probabilities, in which messages in the form of conditional
probabilities are exchanged between variable and check nodes
on the code’s Tanner graph. The BP algorithm achieves best er-
ror performances amongst other practical decoding algorithms,
although it also involves higher computational complexity.
Reduced complexity variations of the BP [5-7] offer trade-
offs between performance and computational requirements. A
low complexity Bit Flipping (BF) decoding algorithm was also
proposed by Gallager [1], in which the most unreliable bits,
classified in terms of the number of associated parity check
failures, are flipped. Various improved performance variations
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of the BF algorithm have been reported in [8,9]. A third
decoding approach based on linear programming has been
recently proposed in [10] and explored further in [11].

In this letter a new approach is followed in order to
develop a decoding algorithm that is fundamentally different
to any of the existing types. The central element in the
proposed algorithm is the non-linear function f(x1, x2) =
x1 + x2 − 2x1x2 which is equivalent to addition over
GF(2), when x1, x2ε{0, 1}. This basic function is nested:
f(..f(f(x1, x2), x3).., xρ) in order to redefine individual par-
ity check equations over the closed convex set [0, 1]ρ (instead
of the binary finite field). This type of convex relaxation, com-
bined with the particular form of the proposed non-linear func-
tion, allows formulation of a multimodal objective function
that entails the code’s constraints. Iterative algorithms, such
as the Gradient Projection (GP) method [12,13], can then be
used to search for a local minimum of the objective function,
that lies in the vicinity of the noisy channel observation.

The number of multiplications in the new algorithm (al-
though it is random - depending on the number of bits that
have converged to 0 and 1 values) in practice is sub-linearly
dependent on the code’s length, whilst convergence is typically
achieved within 10 iterations. Furthermore processing on in-
dividual variable nodes can be performed in parallel, allowing
very small processing latencies.

Section II provides a detailed description of the proposed
algorithm, comments on its computational requirements and
also describes a ‘denser’ representation of the code, which
provides improved performance and faster convergence. Sec-
tion III includes simulation results that give the performance
and convergence speed of the algorithm on short (96,48) and
medium-length (504,252) regular systematic codes. Finally
Section IV gives a summary and conclusions.

II. GRADIENT PROJECTION DECODING ALGORITHM

A. Basics and Notations

An (n, k) binary LDPC code is a linear block code that
is characterized by a parity check matrix H (of dimensions
(n − k) × n) that has a low density of 1’s. Depending on
whether the rows and the columns of H are populated by equal
numbers of 1’s or not, the LDPC code is categorized as regular
or irregular, respectively. An LDPC code can alternatively
be represented by a bipartite graph with two independent
node sets: I = {I1, .., In}, J = {J1, .., Jn−k}, (‘variable’ and
‘check’ nodes respectively) that correspond to the columns
and rows of H. For convenience some Ii and Jj will hereon
simply denoted as i and j, respectively. Connections between
the two sets of nodes are determined by the corresponding
positions of 1’s on H. The ‘neighbourhood’ Nc(j) of check
node jεJ is the set of variable nodes connected to j, and
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similarly the ‘neighbourhood’ Nv(i) of a variable node iεI
is the set of check nodes connected to i. In regular LDPC
codes the cardinalities (ρj) of the check node neighbourhoods
(commonly referred to as degrees) are equal for all jεJ , and
the same is true for all variable node degrees (γi). On the
other hand, in irregular codes the variable and check node
degrees are functions of i and j, respectively.

B. Decoding Algorithm

As briefly discussed in Section I, the proposed approach
involves defining and minimizing an objective function that
describes directly the m = n − k parity check equations
that a valid codeword needs to satisfy. Starting point in
the development of such objective function is the non-linear
function

f(x1, x2) = x1 + x2 − 2x1x2 (1)

which is equivalent to addition over GF(2), when
x1, x2ε{0, 1}. It is not difficult to think of alternative
functions that provide this equivalency, but (1) has a
number of features that make it a good choice. The most
significant of these features is its shape over the relaxed
ranges x1, x2ε[0, 1], which can be better appreciated from
Fig. 1; assuming an AWGN channel, if a valid (2-bits long)
codeword c had to satisfy the parity check c1 ⊕ c2 = 0,
and the corresponding noisy observations y= [y1, y2] were
available, then a constraint gradient minimization of (1)
(over [0, 1]2, and by setting (y1, y2) as the starting solution)
would converge to the valid solution closest to the channel
observation, in the Euclidian distance sense. Function (1)
can be generalized for more than two variables, in order to
describe some jth parity check, by putting it into a nested
form

fj(x1, .., xρj
) = f(..f(f(x1, x2), x3).., xρj

) (2)

Using the fact that (2) is symmetric, in the sense that it remains
unchanged by any permutation of its variables, an overall
objective function is formulated as

F (x1, .., xn) = f1(Nc(1)) + .. + fm(Nc(m)) (3)

A constraint local minimum on (3) that lies in the vicinity of
the channel observation can be searched using the iterative GP
method [12,13], which consists of the iteration:

ĉl = PQ[ĉl−1 − α∇F ] (4)

where ĉl is the estimated codeword at iteration l, PQ[.]
signifies the orthogonal projection operator on the convex set
[0, 1]n and α is a positive step parameter that influences the
convergence speed and the accuracy of the algorithm. Under
the particular set constraints each signal component can be
updated independently and in parallel [12]:

ĉi
l =

⎧⎪⎨
⎪⎩

0, if ĉi
l−1 − α ∂F

∂ci < 0
ĉi
l−1 − α ∂F

∂ci , if 0 ≤ ĉi
l−1 − α ∂F

∂ci ≤ 1
1, if ĉi

l−1 − α ∂F
∂ci > 1

(5)

Furthermore it can easily be shown, using the symmetric
property of (2), that
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Fig. 1. Plot of the f = x1 + x2 − 2x1x2 function over the box set [0, 1]2.

∂fj(x1, ., xi, ., xρj
)

∂xi
= 1 − 2fj(x1, ., xi−1, xi+1, ., xρj

) (6)

Assuming a regular LDPC code, it can be deduced from (6)
that the proposed decoding algorithm requires approximately
n(ρ− 2)γ real multiplications, 4n(ρ− 2)γ real additions, and
n ‘clipping’ operations per iteration. In practice the number
of computations will be random, but significantly less than the
above figures; since from (1) it can be seen that no operations
are needed if any of x1, x2 = 0 and only one real addition is
needed if any of x1, x2 = 1.

Based on the above, the proposed decoding algorithm
involves two main steps: a) Set ĉ0 = PQ[y] and b) update
individual signal estimates using (5) for a maximum number
of iterations or until all parity check equations are satisfied.

C. Performance Improvements through Denser Parity Check
Representation of the Code

The use of additional (redundant) higher-order parity
checks, although can result in short cycles on the code’s
Tanner graph (and thus degrade the performance of the BP
algorithm), has been shown in [10] to improve the perfor-
mance of the linear programming based decoder. Simulation
results, which are discussed in Section III, show that the
performance and convergence speed of the proposed decoding
algorithm improve just through a higher-order (denser) parity
check representation of the code, i.e. not by using higher-order
parity checks additionally to the first-order ones.

In order to limit the impact on the decoding complexity,
only a ‘second-order’ representation of the code has been
considered. In particular, second-order parity checks have been
constructed by taking, for each i, the mod-2 summation of
all possible pairs of first-order parity checks that belong in
Nv(i). Assuming a regular (ρ, γ) LDPC code, the second-
order representation yields a (2(ρ − 1), (ρ − 1)γ(γ − 1))
equivalent code.

III. SIMULATION RESULTS

The performance of the proposed algorithm has been eval-
uated on short (96,48) and medium-length (504,252) regular
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Fig. 2. Performance of proposed decoding algorithm on the (96,48) code.

systematic LDPC codes; both with ρ = 6 and γ = 3. The
results for the (96,48) code are given in Fig. 2. The GP
decoder was tested for three choices of the step parameter:
α = 0.05, 0.2 and 0.4, and also with the second-order parity
check representation of the code. It is observed that larger
values of the step parameter lead to faster convergence, with a
small penalty on the performance (∼ 0.1dB), while the denser
representation of the code (denoted as GP∗ on the figure) gives
a performance benefit of about 0.2-0.3dB at BER=10−5. For
comparison, the BF algorithm proposed by Liu and Pados (LP)
([9]) was also simulated. It is observed that the GP decoder
gives a performance benefit of about 0.8-1dB, although it
lags the performance of the BP by about the same margin
at BER=10−5. It is also worth noting that in the GP decoder
with α = 0.2 and Eb/N0 = 6dB, on average (over the 8
iterations) 44 variables are converged to 0 and another 44 to
1. Similarly, in the denser code representation example, on
average 42 variables are converged to 0 and another 42 to
1. These experimental results give a good indication that the
computational requirements of the GP decoder are in practice
very small.

Figure 3 gives the results for the (504,252) code. It is
observed that on this code the performance gap between the
BP and the GP decoder is wider: about 2.5dB at BER=10−5,
although the GP decoder still has a performance advantage
(about 0.5dB at BER=10−5) relative to the LP decoder. The
second-order representation of the code yields a 0.5dB benefit
(at BER=10−5), and also faster convergence. In this code
example the average number of variables converged to 0 and 1
in the GP decoder, is 235.15 for both signal values, and 215.9
with the denser code representation.

IV. CONCLUSION

A new type of decoding algorithm for LDPC codes has
been proposed, which is based on the local minimization of
a multi-modal non-linear objective function that entails the
code constraints. A valid codeword in the vicinity of the
noisy channel observation is searched by the GP method,
which converges to a constraint minimum over the ‘box’
(convex) set. The new decoding approach has computational
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Fig. 3. Performance of proposed decoding algorithm on the (504,252) code.

and implementation advantages (e.g. no noise statistics need
to be estimated) relative to the BP algorithm, although the
latter provides better performance. Finally it is commented
that the proposed decoder, being based on different principles
than with existing types of decoders, opens a new research
path on the decoding of LDPC codes.
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