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On the Space Reuse Efficiency of TSI-free OTDM Rings
An Chen, Albert Kai-Sun Wong, and Chin-Tau Lea

Abstract— Design of future OTDM (Optical Time-Division
Multiplexing) rings may require the network nodes to perform
the time-slot interchange (TSI) function of moving data from an
incoming time-slot to different outgoing time-slots. An efficient
optical buffer technology for optical TSI is not currently avail-
able. Our previous work [1] has shown that without TSIs, all slots
in an OTDM rings will form equal-length cycles. In this letter, we
derive a general formula that shows the relationship between the
cycle length and the space reuse efficiency of a TSI-free OTDM
bi-directional ring.

Index Terms— Optical TDM, optical ring architecture.

I. INTRODUCTION

THE bandwidth granularity offered by WDM (Wavelength
Division Multiplexing) systems is coarser than needed in

many scenarios. OTDM (optical time-division multiplexing)
networks [2][3][4] subdivide the bandwidth of an individual
wavelength into time slots within periodic frames. A lightpath
in an OTDM network is analogous to a circuit in a traditional
TDM system - it occupies and is identified a sequence of
allocated time slots as it traverses link to link from source
to destination and provides a temporal fraction of the link
bandwidth. OTDM requires minimum header processing and
is a more practical form of time-domain optical switching in
the near future than packet switching [5][6], the latter being
hindered by the lack of adequate optical processing devices.

Ring is a commonly used topology for TDM systems.
Each node can perform the add/drop operation of inserting
and removing data from a slot in the ring. A node often
needs to switch the data from an incoming slot to a different
outgoing slot. This is the time-slot interchange (TSI) function.
An optical TSI is much harder to implement than its electronic
counterpart. One implementation is shown in Fig. 1 where the
optical TSI consists of an optical switch and fiber-delay-lines.
A data block will pass through the switch a variable number
of times depending on how long it should be delayed, and
suffer from a variable signal attenuation. The size of the buffer
grows with the OTDM frame size, which is usually large. The
complexity and the cost of the TSI will make an OTDM ring
impractical to build at the current time.

If we eliminate the TSI, an OTDM ring needs only simple
delay lines at each node to synchronize the incoming and
outgoing slots (Fig. 2 ), significantly reducing complexity and
cost. A fundamental result we discovered in [1] is that in every
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Fig. 1. An optical TSI example which consists of an optical space switch
and FDLs.
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Fig. 2. A ring without TSI needs only simple fiber delay lines in each node
to synchronize the incoming and outgoing slots. It is much easier and cheaper
to build than a ring with TSI.

TSI-free OTDM ring, all slots form equal-length cycles and
the slot cycle length will affect the efficiency of the ring.

Consider a unidirectional ring with N nodes indexed from 0
to (N−1) in the clockwise direction, such that data flows from
node i to node ((i+1) mod N) on the ring. Link from node i
to node ((i+1) mod N) is denoted as link i (Fig. 2). The slot
size is 1 and the frame size is m. Without loss of generality,
we can assume that all nodes begin their frames at the same
time and slot 0 is transmitted from all nodes simultaneously.
Suppose the propagation delay on link 0 is 2 slots. Then the
slot (node 0, slot 1) will become (node 1, slot 3) after the slot
leaves node 1 (Fig. 2)

Time shifting occurs naturally as a result of propagation
delay. This phenomenon is analogous to wavelength conver-
sion in a WDM network. The only difference is that time slot
shifting is done without any additional hardware. In contrast,
wavelength shifting requires a wavelength converter.

If we trace a slot as it traverses the ring, we obtain a
sequence of slot numbers. We discovered in [1] that any traced
slot will eventually return to the original slot and form a cycle.
We called this a slot cycle [1]. Furthermore, all slots in a TSI-
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Fig. 3. There are 2 slot cycles assuming the propagation delays are 4 slots
except link 1 and 6 (both have delay of 1 slot).
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Fig. 4. One lightpath from node 1 to node 7 has been set up. If we intend
to set up another lightpath from node 7 to node 2, we have to use a different
slot because the two paths overlap in the segment between node 1 and 2.

free OTDM ring are divided into disjoint slot cycles and all
slot cycles have the same length. One example is shown in
Fig. 3 where m = 4, N = 8. The propagation delay equals
4 on all links except the links between nodes 1 and 2 and
between nodes 6 and 7, which have propagation delay of 1
slot. There are two slot cycles in this example: one shown by
the solid line and the other by the dashed line. Both cycles
have the same length of 16 - each contains 16 time slots.

Another important result of [1] is that the length of the slot
cycle has a strong bearing on the space re-use efficiency of
each slot of the ring. An intuitive explanation of the problem
is given in Fig. 4. To simplify the discussion, we assume that
the propagation delay between two nodes is zero (or a multiple
of the frame size) such that slot 0 sent out by node i will be
sent out again as slot 0 by node (i + 1). Suppose slot 0 from
node 1 to node 7 has already been occupied by an existing
lightpath, and now a new lightpath from node 7 to node 2
needs to be set up. Because the two lightpaths overlap in the
segment between node 1 and node 2, we must use a different
slot for the new connection. In other words, the remaining
segment of slot 0 between node 7 and node 1 cannot be used
for the second lightpath even when it is available.

This simple example is based on a unidirectional ring. Often
rings are bidirectional and the space efficiency problem needs
to be combined with the routing and slot assignment (RTA)
problem. Routing refers to the selection of which directional
ring to use, and slot assignment refers to which slot in a frame
to choose. In this paper we will derive a general bound to
characterize the ring efficiency and its relationship with the
cycle length in a TSI-free bi-directional OTDM ring. We also
discuss the RTA scheme that leads to the performance bound.

This work, as shown later, uses some results derived for
WDM rings. If propagation delay = 0, the RTA problem is
equivalent to the RWA (routing and wavelength assignment)
problem in a WDM network without wavelength converters
[7][8]. But once delays are introduced, slot cycles are formed,
and the RTA problem will have no counterpart in the WDM
network.

II. SPACE REUSE EFFICIENCY AND CYCLE LENGTH

We consider a bidirectional OTDM ring network that con-
sists of a clockwise ring and a counter-clockwise ring. To
study the impact of the cycle length on the space use efficiency
of a ring, one can use a general traffic matrix but then usually a
simulation-based study is required. One may also select some
special classes of traffic matrixes that allow easier analyses
and closed-form solutions [7][8]. We use the latter approach
in this paper. For an OTDM or WDM ring, the element ti,j in
the traffic matrix represents the number of lightpaths to be set
up from node i to node j. Thus, a traffic matrix represents a
virtual topology to be constructed on top of the ring. We focus
on what is known as the single-port traffic matrix class. In a
matrix of this class, each node can originate and terminate at
most one lightpath. So the corresponding virtual topology will
be a single loop or multiple loops. For example, assume the
ring has 8 nodes. The topology represented by the following
single-port traffic matrix

From 0 1 2 3 4 5 6 7
To 7 0 5 2 3 1 4 6

forms one logical loop, and the topology of the following
traffic matrix

From 0 1 2 3 4 5 6 7
To 7 0 5 4 2 3 1 6

corresponds to two loops. In the following, we consider single-
port traffic matrixes that correspond to a single-loop virtual
topology, as done in [7][8]. Let a connection be denoted as a
source-destination pair (nk, nj). The two connections (nk, nj)
and (nj , nh) are said to be adjacent. In a single-loop virtual
topology, all N lightpaths can be labeled into N consecutive
adjacent lightpaths. Our intention is to show the relationship
between the space reuse efficiency of the ring and the slot
cycle length.

We denote the propagation delay on link i by di, where di is
an integer (i.e. a multiple of time slots). Denote D as the total
propagation delay of the ring; i.e. D = d0 + d1 + ... + dN−1.
In [1], we showed that the cycle length L = xN ,where x is
the smallest integer that satisfies

xD mod m = 0. (1)

Given N and x, we will establish the theorem that
x� N

4x−1�slots are always sufficient for the set up of a single-
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loop virtual topology. The theorem relies on the following
lemma which outlines an efficient routing and wavelength
assignment strategy.
Lemma 1: Suppose the slot-cycle length equals xN , we can
always establish (4x−1) adjacent lightpaths in a pair of slot-
cycles, one from the clockwise ring and the other from the
counterclockwise ring.
Proof: Denote these (4x − 1) adjacent connections by 1 to
(4x−1). Suppose that there is an artificial connection 4x that
connects the destination node of connection (4x− 1) and the
source node of connection 1. Thus these 4x connections form
a one-loop logical topology. We use Li to denote the number
of hops required to set up the connection i in the clockwise
direction. Let ∑4x

i=1
Li = vN (2)

where v must be an integer as a single-loop virtual topology
must form an integer number of cycles around the ring in the
clockwise direction.

Let L̄ denote the average number of hops required in the
clockwise direction for these 4x connections. We have

L̄ =
∑4x

i=1 Li

4x
. (3)

Let h = �xN/L̄�. It is shown in [8] that it is always possible
to find a set of h adjacent lightpaths with an average hop
count L̃ less than or equal to L̄. We call this set of h adjacent
lightpaths the clockwise set, and call the set of remaining (4x−
h) lightpaths the counterclockwise set. The total number of
consecutive hops required to accommodate the clockwise set,
denoted by Dc, in the clockwise direction, is

Dc = hL̃ ≤ hL̄ = �xN/L̄� · L̄ ≤ xN (4)

Thus we can put the clockwise set in the clockwise slot-cycle
with size xN .

Next, consider the remaining (4x − h) lightpaths. Denote
the average clockwise hop count of the counter-clockwise set
by L̂. Because L̃ ≤ L̄, obviously L̂ ≥ L̄. If we route them
through the counterclockwise ring, the average hop count must
be (N − L̂). Let Dcc denote the total number of consecutive
hops required to accommodate the counterclockwise set in the
counterclockwise direction. Then we have

Dcc = (4x − h)(N − L̂)
≤ (4x − h)(N − L̄) = (4x − �xN

L̄
�)(N − L̄)

(5)

From Eq. (2) and (3), we get

L̄ = (vN)/(4x) (6)

Then we have

Dcc ≤ (4x−�xN

L̄
�)(N−L̄) =

N

4x
(4x−�4x2

v
�)(4x−v) (7)

It can be shown that for integer x and v, the last quantity in
Eq. (7) is maximized when v = 2x, which leads to

Dcc ≤ N

4x
(4x − �4x2

v
�)(4x − v) ≤ xN (8)

Thus a counterclockwise slot-cycle with size xN is sufficient
to set up the counter-clockwise set. �

We now use the preceding lemma to present our theorem
which specifies the maximum number of slots needed to set
up a single-loop virtual topology.
Theorem 1: In a bidirectional TSI-free OTDM ring, any
single-loop logical topology can be implemented with at most
x�N/(4x−1)� time slots in each direction, where x is defined
in Eq. (2).
Proof: A single-loop virtual topology consists of N consecu-
tive adjacent lightpaths (connections) in the worst case. Divide
the lightpaths into sets of (4x− 1) adjacent lightpaths. There
will be �N/(4x − 1)� sets and the last set may contain less
than (4x− 1) adjacent lightpaths. By Lemma 1, we can route
each of these sets in a pair of slot-cycles of length xN . A slot-
cycle of length xN traverses each link x times and therefore
consumes x time slots. Thus, any single-loop connection
pattern can be implemented with at most x�N/(4x−1)� slots
in each direction. �

Theorem 1 provides a bound on the capacity (the number
of slots) needed for setting up a single-loop virtual topology.
This bound is itself lower-bounded by �N/4�. Theorem 1,
by considering an arbitrary cycle length xN , supplements
our result in [1], where we assumed that all the slots in
the ring is connected in one slot cycle and proved that a
capacity of �N/4� slots is always sufficient to accommodate
any single-loop virtual topology with N lightpaths. Theorem
1 is applicable when the cycle length xN is insufficient to
accommodate all the lightpaths.

III. CONCLUSION

Time shifting is the main difference between an OTDM ring
and a WDM ring. With time-slot corresponding to wavelength,
time shifting in OTDM is analogous to forced wavelength
conversion in WDM. While time shifting occurs naturally as
a result of propagation delay, wavelength conversion in the
WDM is not possible without wavelength converters. In this
paper we have derived a general bound to characterize the ring
efficiency and showed its relationship with the cycle length in
a TSI-free bidirectional OTDM ring. We also discussed the
RTA scheme that leads to the performance bound.
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