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Abstract— The design of low-density parity-check (LDPC)
codes under hybrid iterative / maximum likelihood decoding is
addressed for the binary erasure channel (BEC). Specifically,
we focus on generalized irregular repeat-accumulate (GeIRA)
codes, which offer both efficient encoding and design flexibility.
We show that properly designed GeIRA codes tightly approach
the performance of an ideal maximum distance separable (MDS)
code, even for short block sizes. For example, our (2048, 1024)
code reaches a codeword error rate of 10−5 at channel erasure
probability ε = 0.450, where an ideal (2048, 1024) MDS code
would reach the same error rate at ε = 0.453.

Index Terms— LDPC codes, binary erasure channel, maximum
likelihood decoding, iterative decoding, packet erasure correcting
codes.

I. INTRODUCTION

ITERATIVE (IT) decoding based on belief propagation
has been shown to provide very effective error correction

capability over a wide range of communication channels when
applied to LDPC codes. In the particular case of the BEC,
it allows also to asymptotically approach the capacity with
arbitrarily small gap for some LDPC ensembles (see e.g. the
codes proposed in [1]).

However, the performance of a finite length (n, k) LDPC
code under IT decoding may be quite different from the
performance of the same code under maximum likelihood
(ML) decoding. At high error rates (waterfall region) the IT
performance curve usually exhibits a non-negligible perfor-
mance degradation with respect to that of the same code under
ML decoding. Moreover, at low error rates the IT performance
curve usually exhibits a higher error floor. Over the BEC this
is due to the presence of stopping sets [2] not associated with
codeword ambiguity, and thus resolvable by the ML decoder.

The existence of patterns of variable nodes (VNs) repre-
senting stopping sets for the IT decoder, but not for the ML
decoder, suggests a possible hybrid erasure correction strategy
which consists of performing IT decoding and, upon a decoder
failure, employing the ML decoder to resolve the residual
maximum stopping set. This hybrid iterative/maximum like-
lihood (HIML) decoder achieves the same performance as
ML but with a lower complexity, as some of the unknowns
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are recovered iteratively. Moreover, reduced-complexity ML
decoding for the BEC can be used [3], [4].

In this letter we address the design of LDPC codes for
HIML decoding over the BEC. We first propose code design
guidelines that allow near-optimum performance and a man-
ageable encoding/decoding complexity. We then adopt GeIRA
codes [5] as a simple solution for satisfying such guidelines.

II. EFFICIENT ML DECODING FOR LDPC CODES

ML decoding of binary linear block codes is known to be
in general an NP-hard problem [6]. However, for the BEC it
is equivalent to solving the linear equation

xK HT
K

= xK HT
K ,

where xK (xK) denotes the set of erased (correctly received)
encoded bits and HK (HK) the submatrix composed of the
corresponding columns of the parity-check matrix H. Then,
ML decoding for the BEC can be implemented as a Gaussian
elimination (GE) performed on the binary matrix HK : its
complexity is cubic in the codeword length [7].

Recently, the problem of performing ML decoding of LDPC
codes in a more efficient way than with a full GE has
been considered [3]. There, the sparseness of the parity-check
matrix is exploited to put HK into an approximate triangular
form through row/column permutations only (this technique
is reminiscent of the triangulation procedure proposed in [8]).
The encoded bits corresponding to the columns of HK which
cannot be put into triangular form are named reference bits.
In order to resolve the whole set of unknowns xK , it is
sufficient to apply GE to these columns only: provided that
GE is successful, the remaining unknown bits are recovered
by low-complexity back-substitution. While the overall com-
plexity remains cubic in the codeword length, this algorithm is
efficient as long as the number of reference bits is kept small.

III. THE DESIGN OF LDPC CODES FOR HIML DECODING

A. Design guidelines

The design of LDPC codes for HIML decoding requires
consideration of severe constraints and complexity issues. The
aim is to generate codes with a manageable encoding/decoding
complexity and exhibiting a near-optimum performance down
to low error rates. For given k and n we use as a benchmark
the performance of an ideal MDS code with minimum distance
dmin = n − k + 1 under ML decoding1.

The following general requirements should be fulfilled.

R1. The code shall be systematic.

1The expression “ideal MDS code” is used as in general such a code does
not exist in the binary case.
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R2. Low-complexity encoding shall be guaranteed.
R3. The frequency of ML decoding usage shall be as small

as possible even for large erasure probabilities.
R4. When the ML decoder is used, the number of reference

bits shall be as small as possible.
R5. The ML performance shall closely match that of an ideal

MDS code in the waterfall region.
R6. The code shall exhibit a low error floor.

Systematic codes allow delivery of the correctly received
information bits even in case of decoding failure (R1). Ef-
ficient encoding is required to obtain a coding scheme easy
to implement (R2). The code shall be designed in order to
minimize the decoding complexity (R3 and R4). From a code
design point of view, the requirements R3 and R4 imply that
the LDPC code shall exhibit a good IT decoding threshold
ε∗IT as a larger ε∗IT is usually associated with a smaller
number of reference bits. We observe that, while under IT
decoding ε∗IT is related to the waterfall performance of the
LDPC code, when using HIML decoding larger ε∗IT implies
reduced decoding complexity. In order to have a close-to-ideal
waterfall performance (R5) we need to design LDPC codes
with ML threshold ε∗ML close to 1−R, which usually requires
large check node (CN) degrees. Since dmin < n − k + 1,
the performance deviates from that of an ideal MDS code
due to the error floor only depending on the code distance
spectrum. Such an error floor appears at low error rates (R6)
if the designed code has a good (large) minimum distance.

Note that some of these requirements are conflicting (e.g.
R3/R4 and R6), imposing a tradeoff. For short n (e.g., a
few hundreds of bits) the requirements R3 and R4 (decoding
complexity, related to ε∗IT ) can be relaxed. In fact, due to the
short codeword length, a more frequent use of ML decoding
and a larger fraction of reference bits can be afforded. On
the other hand, the requirement R6 (minimum distance) may
become an issue. Therefore, we propose to use near-regular
LDPC codes in this regime, where ε∗ML for the near regular
distribution shall be very close to 1−R. This requires a larger
CN degree than is usually done for IT decoding, e.g., degree 8
instead of 6 for R = 1/2. For longer codes, the requirements
on the decoding complexity (R3/R4) shall be favored, which
imposes consideration of irregular LDPC codes with a larger
ε∗IT . Again, ε∗ML shall be very close to 1 − R.

B. GeIRA approach

Concerning R1 and R2, there are several solutions for a
systematic and efficient LDPC encoding. Among them, a very
simple one is represented by systematic IRA (SIRA) encoding
[9], [10]. The major drawback of this coding technique is poor
minimum distance (see [11, Theorem 23]). In order to preserve
the extremely simple SIRA-like encoding while improving the
minimum distance, GeIRA codes are considered [5]. They
fulfill R1 and R2 while, as shown in the next section, offering
a good compromise between R3, R4, R5 and R6.

GeIRA codes are systematic LDPC codes that generate
the parity bits by a serial concatenation of an outer low-
density generator matrix (LDGM) code with an inner rate-1
recursive convolutional code (RCC). Decomposing the parity-
check matrix as H = [Hu|Hp], where Hu corresponds to

bit 0 bit 1023

bit 1022bit 767

bit 511

Hu

H = [Hu|Hp]

Hu : (m × k)

Hp : (m × m)

Fig. 1. Parity check matrix of a (1024, 512) GeIRA code with g(D) =
1+D+D256 (Hp with three all-‘1’ diagonals). The diagonal corresponding
to the bit 767 is associated with the term D256 (767=1023-256).

the k systematic bits and Hp to the m = n − k parity bits,
we have that HT

u is the outer LDGM code generator matrix.
Moreover, Hp is specified by the feedback polynomial g(D) =∑t

j=0 gjD
j of the inner rate-1 RCC (where gj ∈ {0, 1} and

g0 = gt = 1). Correspondingly, Hp is lower triangular and
its ‘1’s have a multi-diagonal structure, where the number of
all-‘1’ diagonals equals the number of non-null coefficients of
g(D) (see example in Fig. 1). Note that a SIRA code can be
seen as a GeIRA code with g(D) = 1 + D.

While for SIRA codes the number of degree-2 VNs is
constrained to be not smaller than the number m of CNs, this
is not required for GeIRA codes. Allowing multiple diagonals
in Hp enables to still employ a highly efficient SIRA-like
encoding but with a smaller number of degree-2 VNs, and
also gaining flexibility in the choice of the VN degrees. The
reduced number of degree-2 VNs is beneficial in terms of dmin

[12]: as shown in Section IV, it is possible to generate both
irregular codes with controlled dmin and near-regular codes
exhibiting good dmin even for short block lengths.

Given g(D), the CNs distribution and the systematic VNs
distribution, the GeIRA code can be constructed with the
following algorithm. The connections for the parity VNs are
first drawn according to the multi-diagonal structure of Hp.
The bipartite graph is then completed with the PEG algorithm
[13] for the systematic VNs.

IV. NUMERICAL RESULTS

Examples of design and performance analysis for R =
1/2 codes with short and moderate lengths are provided.
Specifically, we focus on codeword lengths 512, 1024 and
2048 bits. For each length we construct an irregular GeIRA
code with uniform CN degree 9 and feedback polynomial
g(D) = 1 + D + D�0.24 n�: for each code Hp has three
diagonals and the fraction of degree-2 VNs is 0.24. The
systematic VN distribution is given by

Λ(x) = 0.7813x3 + 0.1914x49 + 0.0195x53 + 0.0078x54,

the coefficient of xi being the fraction of systematic VNs
of degree i. The corresponding ensemble is characterized by
ε∗IT = 0.480 and ε∗ML = 0.498. For n = 512, a near-
[4, 8] regular GeIRA code is also considered, with constant
Hu column weight 4 and feedback polynomial g(D) =
1 + D + D4 + D10. We have in this case ε∗IT = 0.383 and
ε∗ML = 0.497.
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Fig. 2. Performance of (512, 256) GeIRA codes compared to the perfor-
mance of an ideal MDS code.
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Fig. 3. Performance of (1024, 512) and (2048, 1024) GeIRA and SIRA
codes compared to the performance of ideal MDS codes.

In Fig. 2 the performance under HIML decoding of the
(512, 256) irregular and of the (512, 256) near-regular GeIRA
codes, in terms of codeword error rate (CER) versus the BEC
erasure probability ε, are compared to the performance of an
ideal (512, 256) MDS code. For the irregular GeIRA code the
IT performance curve is also shown. For both codes, the HIML
curve has a nearly-MDS behavior down to CER � 10−4. At
lower error rates the irregular code deviates remarkably, due to
the presence of a codeword of weight 11. On the other hand,
using the algorithm described in [14] we estimated dmin = 40
(with multiplicity 2) for the near-regular code: the error floor
is expected at CER � 10−20 in this case.

A comparison between the performance of the (1024, 512)
and (2048, 1024) irregular GeIRA codes and that of SIRA
codes with same (n, k) parameters is presented in Fig. 3. The
SIRA codes have a regular CN degree 9, g(D) = 1 + D and
systematic VN distribution given by

Λ(x) = 0.6485x3 + 0.0371x7 + 0.2168x8 + 0.0254x18

+0.0371x19 + 0.0351x54,

leading to ε∗IT = 0.496 and ε∗ML = 0.499.
While presenting nearly the same performance in the wa-

terfall region, there is a clear advantage with GeIRA design
in the error floor region, especially for the n = 1024
case, where the SIRA error floor is above CER = 10−4.
The irregular GeIRA code provides nearly-MDS performance
down to CER � 10−6. The high value of ε∗IT is effective in
reducing the fraction of reference bits. For instance, in the
(2048, 1024) case, the average fraction of reference bits at
ε = 0.5 is approximately 0.016 meaning that, on average, GE
is applied to a submatrix with only 33 columns.

V. CONCLUSION

In this paper the design guidelines for LDPC codes with
hybrid iterative / maximum likelihood decoding over the
BEC have been investigated. The design requirements involve
waterfall and error floor performance, encoding and decoding
complexity. GeIRA codes have been shown to represent a
simple solution to satisfy such requirements for both short and
moderate codeword lengths, due to their very limited encoding
complexity and their flexibility in terms of code design.
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