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On the Capacity of Variable Density Cellular Systems under
Multicell Decoding

Symeon Chatzinotas, Muhammad Ali Imran, and Costas Tzaras

Abstract—The majority of multicell-decoding cellular models
preserve a fundamental assumption which has initially appeared
in Wyner’s model, namely the collocation of User Terminals
(UTs). Although this assumption produces more tractable math-
ematical models, it is unrealistic w.r.t. current practical cellular
systems. In this paper, we alleviate this assumption by assuming
uniformly distributed UTs. The model under investigation is the
uplink channel of a planar cellular array in the presence of
power-law path loss and flat fading. In this context, we employ a
free probability approach to evaluate the effect of UT distribution
on the optimal sum-rate capacity of a variable-density cellular
system.

Index Terms—Information theory, information rates, multiuser
channels, fading channels, land mobile radio cellular systems,
MIMO systems.

I. INTRODUCTION

HE first concrete result for the information-theoretic ca-

pacity of the Gaussian Cellular Multiple Access Channel
(GCMAC) was presented by Wyner in [1]. Using a very simple
but tractable model for the cellular uplink channel, Wyner
showed the importance of joint decoding at the Base Station
(BS) receivers (hyper-receiver) and found the closed forms
of the system capacity under the assumption of hyper-receiver
(a.k.a. multicell decoding). This model triggered the interest of
the research community in the cellular capacity limits and was
extended in [2] to include flat fading conditions. One major
assumption shared in these models was that the cell density is
fixed and only physically adjacent cells interfere. Letzepis in
[3], extended the model by assuming multiple-tier interference
and incorporated a distance-dependent path loss factor in order
to study the effect of cell density in a linear cellular array.
However, the assumption of collocation of all users in a single
cell was still maintained. In this paper, UTs are spatially
distributed within the cell and each channel gain is affected
by a distance-dependent path loss factor. The model under
investigation is a GCMAC over a planar cellular array in the
presence of power-law path loss and flat fading. The presented
analysis is based on the principles of free probability.

II. CHANNEL MODEL AND ANALYSIS

Assume that K users per cell are uniformly distributed
across a planar cellular system comprising N cells. Assuming
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flat fading, the received signal at BS n = 1... N, at time

index ¢, will be given by:

N K
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where x}'[t] is the ¢th complex channel symbol transmitted
by the kth UT of the mth cell and {g}™} are independent,
strictly stationary and ergodic complex random processes in
the time index ¢, which represent the flat fading processes
experienced in the transmission path between the nth BS and
the kth UT in the mth cell. The fading coefficients are assumed
to have unit power, i.e. E[||g,?m[tﬂ|2} = 1 for all (n,m,k)
and all UTs are subject to an average power constraint, i.e.
E[|«[t]||*] < P for each (m, k). The path loss coefficients
¢ in the transmission path between the mth BS and the kth
UT in the nth cell are calculated according to the “modified”
power-law path loss model [3], [4]: ¢ = (1 + dzm)*nm’
where d;™ denotes the distance along the line of sight
of the transmission path and 7 is the path loss exponent.
The model can be more compactly expressed as a vector
memoryless channel of the form y = Hx + z, where the
vector y = [y'... yV]T represents received signals by the
BSs, the vector x = [z} ... 2] represents transmit signals
by all the UTs of the cellular system and the components of
vector z=[z1... 2N]T are independent identically distributed
(i.i.d.) complex circularly symmetric (c.c.s.) random variables
representing AWGN with E[z"] = 0, E[||z"]|*] = o2. The
channel matrix H can be written as H = X ©® G, where
¥ is a N x KN deterministic matrix, G ~ CA(0,Iy) is
a complex Gaussian N x KN matrix comprising the cor-
responding Rayleigh fading coefficients and © denotes the
Hadamard (element-wise) product. The entries of the 3 matrix
are defined by the variance profile function

s(u,v) = (1+d(u,v) )7"/2 )

where u € [0,1] and v € [0, K] are the normalized indexes
for the BSs and the UTs respectively and d(u,v) denotes
the distance between BS w and user v. According to [5], the
asymptotic sum-rate capacity Cypy for this model assuming a
very large number of cells, is given by
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where 4 = KN~y and v = P/o? are the system- and UT-
transmit power over receiver noise ratio respectively, A; (X)
denotes the eigenvalues of matrix X and

Vx(y) = Ellog(1 + yX)]

- / log (1 + y) dFx (M) 4
0

is the Shannon transform [5] of a random square Hermitian
matrix X, whose asymptotic eigenvalue distribution (a.e.d.)
has a cumulative function denoted by Fx (). For a complex
Gaussian matrix G ~ CN (0,Iy), the aed. of +G'G
converges almost surely (a.s.) to the nonrandom a.e.d. of the
Marcenko-Pastur law [6], whose Shannon transform is given
by

Viara) = Vae(y, K), 5)

1
where  Vup (y, K) = log <1+y— Zﬁb(va) >

1 1
+§log(1+yK—Z¢(y>K)>— oy, K) (6

4Ky

and ¢ (y, K) =

<\/y(1+\/ﬁ)2+1—\/y(l—\/ﬁ)2+1>2. %)

The rest of this section describes the derivation of the a.e.d.
of & HHT based on the analysis in [3] and using tools from
the discipline of Free Probability, which was established by
Voiculescu [7]. In this direction, %HTH can be written as the
sum of KN x K N unit rank matrices, i.e.

L HH =S hih,

~H H_;hih“ (8)
where h; ~ CA(0,V;) denotes the ith 1 x KN row vector
of \/LNH The covariance matrix equals V; = 4 (diag(;))?,
where diag(o;) stands for a diagonal matrix with the elements
of vector o; across the diagonal with o; being the ith row of
3. The unit-rank matrices W; = hzhi constitute complex
singular Wishart matrices with one degree of freedom and
their density according to [8, Theorem 3-4] is

By, =

i

— B- 1det(W)1 KN —tr(V]'W;)
5N "1det (V) 9)

It hlT = Q;S; is a singular value decomposition, then the
density can be written as
-1 A\ N —tr(V;'Q:8:8]Ql)

fv.(W,) = By ldet (sisi) e-tr(viiasisial) (1q)
It can be easily seen that if V,; = I, the matrices would be
unitarily invariant [9, Definition 17.7] and therefore asymp-
totically free [10]. Although in our case V; = %diag(af),
we assume that the asymptotic freeness still holds. Similar ap-

proximations have been already investigated in an information-
theoretic context, providing useful analytical insights and

accurate numerical results [11], [12]. In this context, the R-
transform of each unit rank matrix [5, Example 2.28] is given
by

L

s (1
KN 1 —w|lhi||”

Rhi*hi(w) =
and the asymptotic R-transform of H'H is equal to the sum
of the R-transforms of all the unit rank matrices [5, Theorem
2.64]

hm R HTH

~ hm ZRh i,

~ fim L Z [ (12)
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Since the variance profile function of Equation (2) defines a
rectangular block-circulant matrix with 1 x K blocks which
is symmetric about u = Kwv, the channel matrix H is
asymptotically row-regular [5, Definition 2.10] and thus the
asymptotic norm of h; converges to a deterministic constant
for every BS, i.e Vi

J\}im |h;||> = (u,v)dv, (13)

hm —ng —/

where ¢;; is the (7, j)th element of the 3 matrix. In addition,
based on the row-regularity it can be seen that

[ w2

Therefore, while limy_, o, Equation (12) can be simplified to
[5, Theorem 2.31, Example 2.26]

(u,v)dudv.

(14)
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= Q(E)m

=Ryz)1ara(w), (15)
where ¢(X) 2 ||2|* /KN? (16)

with ||X|| £ \/tr {ZTX} being the Frobenius norm of the
matrix. In the asymptotic case, ¢(X) is given by

5 [

The probability density function (p.d.f.) of the a.e.d. of
~HTH follows a scaled version of the Mar&enko-Pastur law
and hence the Shannon transform of the a.e.d. of %HTH can
be approximated by

17)

li

gl ¥
It should be noted that the limiting eigenvalue distribution
converges to the MarCenko-Pastur law, as long as X is

asymptotically doubly-regular [5, Definition 2.10, Theorem
2.49]. In this paper, it is shown that on the grounds of free

(18)
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Fig. 1. Mean Area Spectral EfficiencyAe (bits/sec/Hz/Km?) vs. the cell
radius R. Note that there are 127 UTs in each Km?.

probability, a scaled version of the Marcenko-Pastur law can
be effectively utilized in cases where X is just asymptotically
row-regular. Furthermore, according to [3], this analysis holds
for UTs collocated with the BS in a linear cellular array.
Herein, we show that the convergence holds for the case of
distributed UTs. Closed-form expressions for ¢(X) in the case
of a planar cellular array are studied in [13].

III. NUMERICAL RESULTS

In this section, we present some simulation results in order
to verify the accuracy of the asymptotic analysis for the per-
cell sum-rate capacity Copy of a planar cellular system with
uniformly distributed UTs. In the context of the asymptotic
analysis, Equations (3),(17) and (18) are utilized, while the
distances d(u,v) are calculated assuming that the UTs are
positioned on a uniform planar grid. In the context of Monte
Carlo finite-system simulations, the UT positions are randomly
generated according to the considered distribution and the
capacity is calculated by evaluating the capacity formula [14]:

Copt = (1/N)E [log det (Iy +vHH' )]. (19
The presented results refer to the mean Area Spectral Effi-
ciency (ASE)

Ao = Cope/TR?  (bits/sec/Hz/Km?) (20)
averaged over a large number of fading realizations g7 and
UT positions d;"™ and they are plotted vs. a variable cell
radius R. In this point, it should be noted that the ASE of
conventional interference-limited cellular systems has been
studied in [15]. In the current setting, while scaling the cell
radius, the UT density (users/Km?) K, is kept fixed and
hence the per-cell number of UTs K = KymR? and the
system power scales accordingly. The path loss coefficients
are calculated by considering a nominal power loss Lg at
a reference distance dy (see Table I for parameter values)

§(d) = 4/ Lo(l + d/do)fn.
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TABLE I
SIMULATION PARAMETERS
Parameter Symbol | Value/Range (units)
Cell Radius R 0.1—1km
Reference Distance do 1m
Path Loss at ref. distance Lo —38 dB
Path Loss Exponent n 3.5
UTs per Km? Ko 127
UT Transmit Power Pr 200 mW
Thermal Noise Density No —169 dBm/Hz
Channel Bandwidth B 5 MHz

IV. CONCLUSION

In conclusion, this paper has considered the capacity perfor-
mance of a multicell joint decoding system under two realistic
assumptions: planar coverage area and distributed UTs. Using
a free probability approach, the a.e.d. of the matrix +HHT
has been derived and the proposed analysis was validated with
Monte Carlo simulations for variable cell-density systems. The
importance of the presented methodology lies in the fact that
it allows a more realistic representation of the UTs’ spatial
arrangement. Therefore, this approach can be employed in
order to investigate various practical UT distributions and their
effect on the sum-rate capacity.
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