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Abstract—In this paper, we consider the GLDPC codes with
Reed-Muller (RM) and Bose-Chaudhuri-Hocquenghem (BCH)
codes as component codes. GLDPC codes with RM codes as
component codes is an attractive option for high-speed optical
transmission because they provide excellent coding gains, while
the RM codes can be decoded using low-complexity maximum
a posteriori probability (MAP) decoding based on fast Walsh-
Hadamard transform. Several classes of GLDPC codes (with
component RM or BCH codes) outperforming the turbo product
codes in terms of decoding complexity and coding gain are
presented. We also identify several turbo product codes suitable
for use in optical communications.

Index Terms—Optical communications, Reed-Muller (RM)
codes, BCH codes, generalized low-density parity-check codes,
Walsh-Hadamard transform, turbo-product codes.

I. INTRODUCTION

THE state-of-the-art fiber-optics communication systems
standardized by the ITU employ different concate-

nated Bose-Chaudhuri-Hocquenghem (BCH)/Reed-Solomon
(RS) codes [1]-[3]. Recently, iteratively decodable codes, turbo
[2] and low-density parity-check (LDPC) codes [3], have gen-
erated significant research attention. It has been shown in [3]
that turbo product codes (TPCs) can be matched and outper-
formed by LDPC codes in terms of coding gain and decoding
complexity. Generalized low-density parity-check (GLDPC)
coding [3]-[6] can further improve the overall characteristics
of LDPC codes by decreasing the complexity of decoder,
which is of high importance for optical communications. The
main idea behind the GLDPC codes is to replace the parity-
check equations in a parity-check matrix of global LDPC
code by a linear block code (see [3]-[6] for more details).
The decoding is based on a combination of simple and fast
soft-input-soft-output (SISO) linear block decoders operating
in parallel. The bit reliabilities obtained by SISO decoders
are passed to the message-passing decoder operating on a
bipartite graph of a global LDPC code. The SISO decoders
are commonly designed as maximum a posteriori probability
(MAP) decoders, such as Bahl-Cocke-Jelinek-Raviv (BCJR)
decoder [7], and provide accurate estimates of bit reliabilities
for a global LDPC decoder after small number of iterations.
Due to high-complexity of the BCJR decoder, the GLDPC
coding is limited to simple linear block component codes such
as Hamming codes. The applications with Hamming codes as
component codes are considered in [3],[5],[6].
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In this paper, which is a different version of the previous
work on GLDPC codes with Hamming component codes [3],
BCH and RM codes are employed as component codes. Notice
that GLDPC codes with BCH component codes are considered
in [8], but for hard decision decoding only. GLDPC coding
with RM component codes is an attractive option for high-
speed optical transmission because it can utilize an efficient
low-complexity MAP decoding algorithm based on the mod-
ified Walsh-Hadamard transform proposed in [9] instead of
high-complexity BCJR decoder. Several classes of GLDPC
codes suitable for high-speed implementation are introduced.
RM(4,6) based GLDPC(4096,3201,0.78, 16) code (the param-
eters of code represent codeword length, information word
length, code rate, and lower-bound on minimum distance,
respectively), and BCH(63,57) based GLDPC(6048,4896,0.81,
9) code of code rate 0.81 outperform TPC (employing Chase
II algorithm operating on 3 least reliable bit positions) by
0.93 dB on an additive white Gaussian noise (AWGN) channel
model at BER of 10−9. BER performances are also assessed
using an advanced fiber-optics channel model. We also identify
several classes of turbo-product codes with RM/BCH compo-
nent codes suitable for use in optical communications.

II. GLDPC CODES/TPCS WITH RM/BCH COMPONENT

CODES

To construct a GLDPC code, one can replace each single
parity-check equation of a global LDPC code by the parity-
check matrix of a simple linear block code, known as the
constituent (local) code, and this construction is proposed
by Lentmaier and Zigangirov [6], and we will refer to this
construction as LZ-GLDPC code construction. In another
construction proposed by Boutros et al. in [5], referred here as
B-GLDPC code construction, the parity-check matrix, H , is a
sparse matrix partitioned into W sub-matrices H1, . . . , HW .
H1 is a block-diagonal matrix generated from an identity
matrix by replacing the ones by a parity-check matrix of a
local code of codeword-length n and dimension k. Each sub-
matrix Hj is derived from H1 by random column permuta-
tions. For more details on LZ-GLDPC and B-GLDPC like
codes, and their generalization-fractal GLDPC codes (a local
code is another GLDPC code) an interested reader is referred
to [3]. The code rate of a GLDPC code is lower bounded by
R = K/N ≥ 1 − W (1 − k/n), where K and N denote the
dimension and the codeword-length of a GLDPC code, W is
the column weight of a global LDPC code, and k/n is the
code rate of a local code (k and n denote the dimension and
the codeword-length of a local code). The GLDPC codes with
component Hamming codes are considered in [3], here we are
concerned with GDLPC codes with component codes based
on RM or BCH codes.

A Reed-Muller code RM(r,m) of order r and codeword
length n = 2m [1] is the set of all binary vectors associated
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with coefficients of Boolean polynomials of degree at most r
in m variables. The minimum distance of RM(r,m) code is
2m−r, and the dimension is determined as [1]

k = 1 +
(

m

1

)
+ ... +

(
m

r

)
. (1)

An interesting property of RM codes is that they can be
defined recursively [1]: RM(r, m) = {(a|a + b) : a ∈
RM(r, m − 1), b ∈ RM(r − 1, m − 1)}, where (x|y) de-
notes the concatenation operation. The generator matrix of
RM(r, m) code, denoted as G(r, m), can be therefore defined
recursively by

G(r, m) =
[

G(r, m − 1) G(r, m − 1)
0 G(r − 1, m − 1)

]
(2)

and can be observed as two-level generalized concatenated
code [1]. RM(0,m) is a repetition code, RM(m-1,m) is a
parity-check code, and RM(m,m) corresponds to 2m-tuples
of a vector space. The generator matrix of RM(m, m) can be
represented by

G(m, m) =
[

G(m − 1, m)
0 0 ... 0 1

]
(3)

Another interesting property of RM codes is that the dual
of RM(r, m) code is another RM(m− r − 1, m) code. There-
fore, the generator matrix of RM(m − r − 1, m) code can
be used as the parity check matrix of RM(r, m) code. If
the recursion (2) is applied successively several times the
RM(r, m) can be decomposed into several parity-check codes
RM(m′ − 1, m′), repetition codes RM(0, m′), and the first-
order RM(1, m′) codes. The MAP decoding of parity-check
or repetition codes is trivial, while the first order RM(1, m′)
codes can be decoded using an efficient MAP decoding
algorithm proposed in [9], based on fast Hadamard-Walsh
transform (FHWT). The overall complexity of that algorithm
is in order n′ log2 n′ (where n′ = 2m′

denotes the codeword
length of the first order RM(1, m′) component code), which
is significantly lower than complexity of the BCJR algorithm
that requires about nn−k+1 operations [7]. Therefore, the
complexity of GLDPC codes with RM component codes
is of order N log2 n. Since the complexity of sum-product
algorithm is of order (NLDPC − KLDPC)wr , with wr being
the row weight of LDPC code parity check matrix, by proper
selection of global LDPC code length N and local RM code
length n, the complexity of GLDPC codes is about (NLDPC−
KLDPC)wr/[(N/n)

∑
(n′ log2 n′)] (n′ < n) times lower.

For example, RM(4,6) code can be decomposed using Eq. (2)
on RM(1,2), RM(1,3), RM(2,2), RM(3,3), and RM(4,4) com-
ponent codes. Decoding of RM(m′, m′)(m′ = 1, 2, 3, 4) is
trivial while the complexity of RM(4,6) is dominated by com-
plexity of RM(1,3) decoding block and three RM(1,2) blocks,
which is of order

∑
(n′ log2 n′) = 8 log2 8+3· 4 log2 4 = 48.

B-GLDPC code with W=2 and length N=4096 based on
RM(4,6) code has therefore complexity 11 times lower than
girth-8 column-weight-4 LDPC code of length 8547 (and row
weight 21) considered in Section III. Notice also that GLDPC
decoder for 4096 code contains 4096/64=64 decoder blocks
[composed of RM(1,2), RM(2,3) and RM(m′, m′)(m′ =
1, . . . , 4) decoders], operating in parallel, and this structure
is suitable for FPGA or VLSI implementation. The minimum
distance of GLDPC codes is lower bounded by Tanner’s

inequality [4]. From that inequality we can conclude that large
girth leads to an exponential increase in the minimum distance,
and large minimum distance of the local code d leads to an
increase of the base. In order to keep the code rate high, in all
simulations presented in Section III, we have selected column-
weight of a global code to be W = 2. In that case, if the girth
of global code is g = 8, the minimum distance of GLDPC
code is simply D ≥ d2.

For the description of BCH codes an interested reader is
referred to [1]. Notice that BCH codes can be decoded using
an efficient MAP algorithm proposed in [9] with complexity
n/[(n − k) log2 n] times lower than that of BCJR algorithm
(see [7],[9] for more details about BCJR algorithm).

The TPCs based on BCH component codes are intensively
studied for fiber-optics communications [2]. Notice that a
TPC can be considered as a special case of B-GLDPC code
composed of two sub-matrices H1 and H2 corresponding to
parity-check matrices of outer and inner component codes,
respectively; with permutation operation implemented using
a block-interleaver approach. The TPCs can be decoded by
sequentially decoding the columns and rows using the BCJR
algorithm. However, due to high-complexity of BCJR algo-
rithm, the sub-optimal low-complexity Chase II algorithm is
commonly employed in practical applications [2]. However,
if inner code is based on RM codes, it can be decoded
by employing Ashikhmin’s algorithm [9], which provides
accurate estimates of initial log-likelihood ratios. For example,
the product BCH(512,484)xRM(5,6) (of rate R = 0.93) can be
decoded using the MAP algorithm as inner RM(5,6) decoder
(RM(5,6) code is in fact a simple parity check equation), and
Chase II algorithm as outer BCH(512,484) decoder. Another
interesting example is RM(6,8)xRM(5,7) (R = 0.905) prod-
uct code. The inner RM(5,7) decoder can be implemented
using Ashikhmin’s MAP decoding algorithm, while the outer
RM(6,8) decoder can be implemented using Chase II algo-
rithm. Both examples are suitable for terrestrial long-haul
optical transmission systems. Turbo product example suitable
for submarine systems is BCH(128,113)xBCH(256,239) TPC.
It has been shown in [10] that the complexity of TPC with
extended Hamming component code is comparable to R = 0.8
LDPC code, if fast Chase II algorithm [10] is employed.
However, the complexity of standard Chase II algorithm is
about 5 times larger than that of fast Chase II algorithm for
p = 3 [10], and consequently the complexity of TPCs with
BCH component codes is higher than complexity of LDPC
decoder.

The GLDPC codes proposed in this paper can be put in
systematic form, so that the efficient encoding algorithm due
to Zhang and Parhi [12] can be employed. This algorithm
can efficiently be performed in general purpose digital signal
processors, as shown in [12].

III. PERFORMANCE ANALYSIS AND CONCLUSION

The results of simulation for the AWGN channel model are
shown in Fig. 1, and are obtained by maintaining the double-
precision. GLDPC codes based on BCH(63,57) and RM(4,6)
component codes for W = 2 perform comparably. The
RM(4,6)-based GLDPC code outperforms the BCH(128,113)x
BCH(256,239) TPC based with Chase II decoding algorithm
on p = 3 least reliable bit positions by 0.93 dB at BER
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Fig. 1. BER performance on an AWGN channel: (a) GLDPC codes against
TPCs and LDPC codes, (b) high-rate codes.
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Fig. 2. GLDPC codes against TPC and LDPC codes at 40 Gb/s.

of 10−9 (see Fig. 1(a)). Notice that similar TPC was imple-
mented in LSI technology (see [2] for more details). The TPC
codeword is significantly longer, and the decoding complexity
of GLDPC code based on RM(4,6) is at least 10 lower.
During decoding TPC decoder employs 239 Chase II blocks
operating in parallel, while GLDPC code on RM(4,6) code
requires only 64 low-complexity MAP decoders as explained
in Section II. In simulations presented here we have employed
an efficient realization of Chase II algorithm proposed in
[10]. In Fig. 1(b) BER performance of several classes of
iteratively decodable codes (TPCs, LDPC and GLDPC codes)
of high code rate are compared against conventional RS,
and concatenated RS codes. B-GLDPC code of rate 0.88
outperforms concatenated RS code of rate 0.82 by 2.47 dB
(also at BER = 10−9). RM(6,8)xRM(5,7) TPC of rate 0.905
outperforms concatenated RS code (R = 0.82) by 0.53 dB at
BER of 10−9. LDPC code of rate 0.93, designed using the
concept of product of orthogonal arrays (OAs), outperforms
the same RS concatenated code by 1.15 dB at BER of 10−9.
R = 0.93 LDPC code outperforms RS code of rate 0.937 by
2.44 dB at BER of 10−9.

The results of simulations for the single channel transmis-
sion at 40 Gb/s, and dispersion map similar to the from [3],
are shown in Fig. 2. The span length is set to L = 120 km,

and each span consists of 2L/3 km of D+ fiber followed

by L/3 km of D- fiber. Pre-compensation of -320 ps/nm
and corresponding post-compensation are also applied. RZ
modulation format of a duty cycle of 0.33 is observed, and
the launched power is set to 0 dBm. The GLDPC code of
rate 0.81 and codeword length 6048 with BCH(63,57) code as
component code, performs slightly worse than girth-8 LDPC
code of the same rate and codeword length 8547. However,
decoding complexity of GLDPC code is lower. Both GLDPC
and LDPC codes, although of lower complexity, outperform
BCH(128,113)xBCH(256,239) turbo product code of length
32768 and code rate 0.824. Notice that RM-based GLDPC
codes require larger number of iterations than corresponding
TPCs. On the other hand, the decoding algorithm of RM codes
is based on FHWT, which for sequence of length n requires
n log2 n multiplications and additions, comparable to that of
the fast Fourier transform (FFT).

Notice that parallel concatenated convolutional codes (PC-
CCs), often used in wireless communications, have not been
considered for use in optical communications because the
PCCCs exhibit error floor phenomena around 10−6 (see [11]),
while the targeted BERs in optical communications are well
below 10−9 (often 10−15).

In conclusion, GLDPC codes with BCH and RM component
codes are considered as possible options for high-speed optical
transmission. It is demonstrated by simulation that the RM
or BCH based GLDPC codes are able to outperform their
turbo product counterparts in terms of coding gain with lower
complexity in decoding algorithm. On the other hand, they
require larger number of iterations. GLDPC codes perform
comparably to girth-8 LDPC codes, but have lower complex-
ity. Several classes of GLDPC codes and turbo-product codes
suitable for use in both free-space optical communications and
fiber-optics communications are presented.
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