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Level Crossing Rate and Average Fade Duration
of the Double Nakagami Random Process
and Application in MIMO Keyhole Fading Channels
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Abstract—We present novel exact expressions and accurate |l. ON THE SECOND ORDER STATISTICS OF THE DOUBLE
closed-form approximations for the level crossing rate (LQR) NAKAGAMI -m. RANDOM PROCESS
and the average fade duration (AFD) of the double Nakagami- ) )
m random process. These results are then used to study the Let the double Nakagami: random process be defined as
second order statistics of multiple input multiple output (MIMO)
keyhole fading channels with space-time block coding. Nunmieal Z(t) = X(t)Y (1), (1)
and computer simulation examples validate the accuracy ofte ) ) )
presented mathematical analysis and show the tightness ohe Where X (¢) andY () are a pair of independent Nakagami-

proposed approximations. distributed RVs with probability distribution function®DFs)
Index Terms—Level crossing rate (LCR), Average fade dura- mx \"Y 2z2mx—1 mxr?
tion (AFD), keyhole MIMO fading channels, Nakagami+mn fading, I[x(z) = (Q—) T exp (— ) ) (2)
multiplicative fading X (mx) X
and
my 2my —1 2
my 2y°mY my?y
[. INTRODUCTION == A — 3
r=(gr) Ao (-E) @

Recently, special attention has been given to the so-cal ﬂereQX — E[X2], Qy = E[Y?], andmyx andmy are the

umultiplicative" _fading models. _The double Rayleigh (i'e'fading severity parameters, whef.] means expectation.
Rayleigh*Rayleigh) channel fading model has been found tohc X() and Y'(t) are signal envelopes in some scattering
be suitable when both transmitter and receiver are movifgdio channel exposed to the Doppler effect due to stations’

[ﬂ' Molreovzr,l.n hafs ali(.) Ibe_en :ecerlwtt_lyl usetd f:)rlvlrleygo Blative mobility, thenX(¢) and Y (¢) are time-correlated
channel modeling of multiple-input multiple-output (MIN random processes. Considering a fixed-to-mobile channel,

systems[[2H[3]. Its extension, the double Nakagami.e., each scattered component &f(¢t) andY (¢) has some result-

Nakagamim*Nakagami+n) fading model, has been ConSiOI'ing Doppler spectra with maximum Doppler frequency shift

ered in [4], where the fading between each pair of transrzt = and f,,,, respectively. It was shown inl[6] that, under

anq receive antenngs in presence of the *keyhole™ is char ch conditions, the envelopes time derivativésand Y are
tenzeq as Nak"’?ga”"” fadmg..However, aII_th_e abovg Works‘independent from their respective envelopes, while falhgw
descnt:e an.d gt|l|;e ?nly Fhe first order statistical pnajes of zero-mean Gaussian PDFs with respective variances
these “multiplicative” fading models, such as the outagé an
the error probabilities. But, knowledge of the second ordero? = (7 fma)’Qx/mx, 0% = (Tfmy)’Qy/my.  (4)
statistics for above fading models are equally important| a
are applicable, for example, in modeling and design of the -
multihop communications systenis [5]. A. Second order tatistics

In this letter, we focus on the second order statistics The LCR ofZ at threshold: is defined as the rate at which
of the double Nakagami random process, for which wethe random process crosses leveh the negative direction.
determine exact and approximate analytical solutions teor {T0 extract LCR, we need to determine the joint PDEZo&nd
level crossing rate (LCR) and average fade duration (AFD¥. fzz(z,%), and apply the Rice’s formula
Then we apply these results to study the second order gtatist oo
of the keyhole channels applicable to MIMO systems with Nz(z) :/ 2fy5(2,2)dz. %)
space-time block coding (STBC), operating in specific tich 0
scattering environments. Note that although this workmesu The above expression can be rewritten as
independence among the channels, similar analysis carede us oo oo
to derive LCR and AFD in correlated keyhole channgls [9]. Nz(z) :/O (/0 2fZ-|ZX(2|z,:v)dz':) fz1x (z|z) fx (z)dx

(6)
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from which it is easily seen that, for fixed = 2 and The critical point off(z) is determining as the value affor
X = z, the time derivativeZ is a zero-mean Gaussian RVwhich 0f/0z =0, i.e.,
with varianceo?, = 2*0% /2® + %02 . Now, the bracketed

1
. . = |—(QxQ -
integral in [6) can be solved as o |:2mXQY ( xQy (mx —my)
<. . . Oz1zx 3
/0 sz‘ZX(z|z,:r)dz = o (8) +\/Q§(Q%,(mx —my)? + 4menyﬂy22):| . (15)
The conditional PDF ofZ for some fixedX = x, fzx (z|z), YSN9 (13){15), the approximate closed-form solutionsfie
is determined by simple transformation of RV x (2|2) = LCR and the AFD are respectively obtained as
fv(z/z)/z. Substituting [(B) into [(6), after some aIgebraicN ( 422y =L gy
. . . . Z % —_—
manipulations, we obtain the exact solution for the LCR z T(mx)I(my)
2my —1 . mx my mx my
Na(s) = oy (m_X) (%) x (%) (ﬂ) ) i) (1)
V2r T'(mx)T(my) \ Qx Qy Qx Qy V[ (o)
2 (0\ a0mxmy) (L 2ES) 1 Qx \™ (O \™
R P S mx—m = T ~ - @ =/ -
L+ zt (UY) ! ‘ " " de(9) Z(z) 4z2my—1 Oy \Mx my
The above integral can be evaluated numerically with de- v/f” (zo) e/ 5, L2Mmx My 1 (17)
sired accuracy (e.g. by using some common software such g(z0) 1,3 QxQy | mx, my, 0 |

as Mathematica). Alternatively, one can apply the Laplace o , .

approximation to obtain a highly accurate closed-formtofu Although substitution off (zo), f (20) and g(zo) into (18)

of @) - as presented in the following subsection. and [17) is omitted for brevity, we emphasize that the thokesh
The AFD of Z at threshold: is defined as the average time? appears only as the ratig’ / ((Qx /mx )(Qy /my)).

that the double Nakagami- random process remains below |

A X " - . MIMO STBC COMMUNICATION OVER KEYHOLE
level z after crossing that level in the downward direction,

FADING CHANNELS

_ Fy(2) (10) Potentials of MIMO communications systems are not al-
Nz(z)’ ways achievable even for a fully uncorrelated transmit and

where F; (=) denotes the CDF af, which was derived only receive channels, which is attributed to the rank deficjenic
recently in closed-form folv*Nakagami random process [7].the MIMO channels known as the keyhole or pinhole effect

For the double Nakagami random process, it attains the fofdl: The existence of the keyhole MIMO channels has been
proposed and demonstrated through physical examplesewher

Tz(z)

7 B 1 a2l | 2mxmy 1 although spatially uncorrelated, these channels stillehav
z(2) = L(mx)D(my) 3 o QOxQy | mx,my,0 |7  single degree of freedornl[2]5[3]. Under the keyhole efféue,
11) entries of the channel matri, follow statistics described as
whereI'(-) andG|-] are gamma and Meijer's’ functions. @ product of two independent single-path gains.
B. Laplace approximation A. The MIMO keyhole channel model

Using [g], the Laplace type integral can be approximated asF ™M [4]. the complex path gain of baseband equivalent
signal transmitted over the channel between thie transmit

o0 () e M@y ~ 2m  g(@o) M@ | (12) and thej-th receive antenna at arbitrary momeis expressed
o 7 VXN VS (@0) ’ asl<i<M,1<j<N
when the real valued paramet&ris very large (i.e. A — hij(t) = a(t)B; (t)e? (P Fws (D) (18)
00). In @2), f(z) and g(x) are real-valued functions af 1 M .
andz, is the point at whichf(z) has an absolute minimum VNere {ai(t)e/? "}~ are the complex path gains intro-
(known as the interior critical point of (). Note, thatf”(x) duced by the rich-scattered channe_l fromjgtflrtb transmitting
denotes the second derivative fff) with respect tar. It was antenna to the “keyhole”, anfl3; (t)e/¥s(V} . _ | are the com-
observed that above approximation is very accurate even R3¢x path gains mtrpduced by the rich-scattered chan]%ehfr
small values of\ [8]. Comparing[(IR) and{9), these functionghe “keyhole” to thej-th receiving antenna. Phasgs;(t)},-,

are set as and {zpj(t)}j,v:l are independent and uniformly distributed
Cmxa? | my (22 2mx—my) over [0, 27). Th_e amplitudes{ozi(t.)}f‘i1 and_{ﬁj(t)};.\[:1 are
fl@)=—4 s (;) —In(z ). (13) jid. Nakagamim RVs. The fading severity parameters of
X Y a;(t) are equal tony, whereasQr = E[a?] for all 5. Simi-
22 (o 2 larly, the fading severity parameters 8f(t) are equal tonpg,
g(x) =4 /1+ s <U—> ) (14)  whereasQp = E[ﬁf] for all 5. Assuming mobility of both
Y the transmitter and the receiver with respect to the “keg’hol
whereas the second derivative of the formerfis(z) = all channel gains are time-correlated random processés wit

2mx /Qx +6(my22)/(Qyx?)+2(mx —my)/z? andA = 1. maximum Doppler shiftf,, = f, and fs, = fs, respectively.
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Fig. 1. Normalized LCR for various number of transmit anceiee antennas Fig. 2. Normalized AOD for various number of transmit andeee antennas

Under such conditions, the time derivativés and 3; are output SNR, given by[(20), are respectively determined as

independent fromy; and 3;, respectively, and both follow N - N MR/~ 22
zero-mean Gaussian PDFs with variances give@ya@); +() 2V /j) ’ (22)
(wfa)QQT/mT, 1 S ) S M and Ué' = (ng)QQR/mR, TV(/}/) = TZ( /YMR//Y) (23)
1<j<N. IV. NUMERICAL RESULTS

B. Orthogonal space-time block coding and decoding We present several numerical examples for the LCR and the
The orthogonal spacetime block encoding and decodiAdgD of the STBC MIMO communications system operating
(signal combining) transform a MIMO fading channel intmver a keyhole fading channel. The mobile transmitter and
an equivalent single-input-single-output (SISO) fadihgrnel the mobile receiver are assumed to introduce same maximum
with a path gain of the squared Frobenius norm of the MIMOoppler shifts due to same relative speeds with respecteto th
channel matrixH(t) = [hq;(t)] 1, [4], “keyhole”, yielding fo = fs = fm.
Figs. 1 and 2 depict the normalized LCRV{/f,,) and
M N M N : :
2 2 5 5 normalized AFD {’, f,,) of the instantaneous output SNR vs.
IH@®)[F = Z Z [hii (DI = (Z i (t)> Z CHO) normalized SNR threshold. The normalized SNR threshold (
==t =l =1 axis) is calculated as0log[y M R/(7(Qr/mz)(Qr/mg))].
19) ; : \
. . . The results are obtained for three different pairs of nunafer
at arbitrary moment. After space-time block decoding, the . : :
transmit and receive antenn@¥/, '), appearing as curve pa-

instantaneous output signal-to-noise ratio (SNR) per Symbrameters. For each paid/, N), the three comparative curves

is given by o ) on both figures indicate excellent match between the exatt a
V(t) = WHH@)”% (20)  the approximate solutions for the two statistical paransete
wherey — E,/N, is the average SNR per receive antenngoth of which are validated by Monte Carlo simulations.
= s 1
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