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Level Crossing Rate and Average Fade Duration
of the Double Nakagami-m Random Process

and Application in MIMO Keyhole Fading Channels
Nikola Zlatanov, Zoran Hadzi-Velkov, and George K. Karagiannidis,

Abstract—We present novel exact expressions and accurate
closed-form approximations for the level crossing rate (LCR)
and the average fade duration (AFD) of the double Nakagami-
m random process. These results are then used to study the
second order statistics of multiple input multiple output (MIMO)
keyhole fading channels with space-time block coding. Numerical
and computer simulation examples validate the accuracy of the
presented mathematical analysis and show the tightness of the
proposed approximations.

Index Terms—Level crossing rate (LCR), Average fade dura-
tion (AFD), keyhole MIMO fading channels, Nakagami-m fading,
multiplicative fading

I. I NTRODUCTION

Recently, special attention has been given to the so-called
“multiplicative” fading models. The double Rayleigh (i.e.,
Rayleigh*Rayleigh) channel fading model has been found to
be suitable when both transmitter and receiver are moving
[1]. Moreover, it has also been recently used for keyhole
channel modeling of multiple-input multiple-output (MIMO)
systems [2]-[3]. Its extension, the double Nakagami-m (i.e.,
Nakagami-m*Nakagami-m) fading model, has been consid-
ered in [4], where the fading between each pair of transmit
and receive antennas in presence of the “keyhole” is charac-
terized as Nakagami-m fading. However, all the above works
describe and utilize only the first order statistical properties of
these “multiplicative” fading models, such as the outage and
the error probabilities. But, knowledge of the second order
statistics for above fading models are equally important, and
are applicable, for example, in modeling and design of the
multihop communications systems [5].

In this letter, we focus on the second order statistics
of the double Nakagami-m random process, for which we
determine exact and approximate analytical solutions for its
level crossing rate (LCR) and average fade duration (AFD).
Then we apply these results to study the second order statistics
of the keyhole channels applicable to MIMO systems with
space-time block coding (STBC), operating in specific rich-
scattering environments. Note that although this work assumes
independence among the channels, similar analysis can be used
to derive LCR and AFD in correlated keyhole channels [9].
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II. ON THE SECOND ORDER STATISTICS OF THE DOUBLE

NAKAGAMI -m RANDOM PROCESS

Let the double Nakagami-m random process be defined as

Z(t) = X(t)Y (t) , (1)

whereX(t) andY (t) are a pair of independent Nakagami-m
distributed RVs with probability distribution functions (PDFs)

fX(x) =

(

mX

ΩX

)mX 2x2mX−1

Γ(mX)
exp

(

−mXx
2

ΩX

)

(2)

and

fY (y) =

(

mY

ΩY

)mY 2y2mY −1

Γ(mY )
exp

(

−mY y
2

ΩY

)

, (3)

whereΩX = E[X2], ΩY = E[Y 2], andmX andmY are the
fading severity parameters, whereE[·] means expectation.

If X(t) and Y (t) are signal envelopes in some scattering
radio channel exposed to the Doppler effect due to stations’
relative mobility, thenX(t) and Y (t) are time-correlated
random processes. Considering a fixed-to-mobile channel,
each scattered component ofX(t) andY (t) has some result-
ing Doppler spectra with maximum Doppler frequency shift
fmx and fmy, respectively. It was shown in [6] that, under
such conditions, the envelopes time derivativesẊ and Ẏ are
independent from their respective envelopes, while following
zero-mean Gaussian PDFs with respective variances

σ2
Ẋ

= (πfmx)
2ΩX/mX , σ2

Ẏ
= (πfmy)

2ΩY /mY . (4)

A. Second order statistics

The LCR ofZ at thresholdz is defined as the rate at which
the random process crosses levelz in the negative direction.
To extract LCR, we need to determine the joint PDF ofZ and
Ż, fZŻ(z, ż), and apply the Rice’s formula

NZ(z) =

∫ ∞

0

żfZŻ(ż, z)dż . (5)

The above expression can be rewritten as

NZ(z) =

∫ ∞

0

(∫ ∞

0

żfŻ|ZX(ż|z, x)dż
)

fZ|X(z|x)fX(x)dx

(6)
wherefŻ|ZX(·, ·, ·) is the conditional PDF ofŻ conditioned
on Z and X . This conditional PDF can be determined by
finding the time derivative of both sides of (1),

Ż = Y Ẋ +XẎ =
Z

X
Ẋ +XẎ , (7)
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from which it is easily seen that, for fixedZ = z and
X = x, the time derivativeŻ is a zero-mean Gaussian RV
with varianceσ2

Ż|ZX
= z2σ2

Ẋ
/x2+x2σ2

Ẏ
. Now, the bracketed

integral in (6) can be solved as
∫ ∞

0

żfŻ|ZX(ż|z, x)dż =
σŻ|ZX√

2π
. (8)

The conditional PDF ofZ for some fixedX = x, fZ|X(z|x),
is determined by simple transformation of RVs,fZ|X(z|x) =
fY (z/x)/x. Substituting (8) into (6), after some algebraic
manipulations, we obtain the exact solution for the LCR

NZ(z) =
1√
2π

4z2mY −1 σẎ
Γ(mX)Γ(mY )

(

mX

ΩX

)mX
(

mY

ΩY

)mY

×
∫ ∞

0

√

1 +
z2

x4

(

σẊ
σẎ

)2

x2(mX−mY ) e
−
(

mXx2

ΩX
+

mY z2

ΩY x2

)

dx (9)

The above integral can be evaluated numerically with de-
sired accuracy (e.g. by using some common software such
as Mathematica). Alternatively, one can apply the Laplace
approximation to obtain a highly accurate closed-form solution
of (9) - as presented in the following subsection.

The AFD ofZ at thresholdz is defined as the average time
that the double Nakagami-m random process remains below
level z after crossing that level in the downward direction,

TZ(z) =
FZ(z)

NZ(z)
, (10)

whereFZ(z) denotes the CDF ofZ, which was derived only
recently in closed-form forN*Nakagami random process [7].
For the double Nakagami random process, it attains the form

FZ(z) =
1

Γ(mX)Γ(mY )
G2,1

1,3

[

z2
mXmY

ΩXΩY

∣

∣

∣

∣

∣

1
mX ,mY , 0

]

,

(11)
whereΓ(·) andG[·] are gamma and Meijer’sG functions.

B. Laplace approximation

Using [8], the Laplace type integral can be approximated as
∫ ∞

0

g(x) e−λf(x)dx ≈
√

2π

λ

g(x0)
√

f ′′(x0)
e−λf(x0) , (12)

when the real valued parameterλ is very large (i.e.,λ →
∞). In (12), f(x) and g(x) are real-valued functions ofx
andx0 is the point at whichf(x) has an absolute minimum
(known as the interior critical point off(x)). Note, thatf ′′(x)
denotes the second derivative off(x) with respect tox. It was
observed that above approximation is very accurate even for
small values ofλ [8]. Comparing (12) and (9), these functions
are set as

f(x) =
mXx

2

ΩX
+
mY

ΩY

( z

x

)2

− ln(x2(mX−mY )) , (13)

g(x) =

√

1 +
z2

x4

(

σẊ
σẎ

)2

, (14)

whereas the second derivative of the former isf
′′

(x) =
2mX/ΩX+6(mY z

2)/(ΩY x
4)+2(mX−mY )/x

2 andλ = 1.

The critical point off(x) is determining as the value ofx for
which ∂f/∂x = 0, i.e.,

x0 =
[ 1

2mXΩY

(

ΩXΩY (mX −mY )

+
√

Ω2
XΩ2

Y (mX −mY )2 + 4mXmY ΩXΩY z2
)]

1

2

. (15)

Using (13)-(15), the approximate closed-form solutions for the
LCR and the AFD are respectively obtained as

NZ(z) ≈
4z2mY −1 σẎ
Γ(mX)Γ(mY )

×
(

mX

ΩX

)mX
(

mY

ΩY

)mY g(x0)
√

f ′′(x0)
e−f(x0) , (16)

TZ(z) ≈
1

4z2mY −1 σẎ

(

ΩX
mX

)mX
(

ΩY
mY

)mY

×
√

f ′′(x0) ef(x0)

g(x0)
G2,1

1,3

[

z2
mXmY

ΩXΩY

∣

∣

∣

∣

∣

1
mX , mY , 0

]

. (17)

Although substitution off(x0), f
′′

(x0) and g(x0) into (16)
and (17) is omitted for brevity, we emphasize that the threshold
z appears only as the ratioz2/((ΩX/mX)(ΩY /mY )).

III. MIMO STBC COMMUNICATION OVER KEYHOLE

FADING CHANNELS

Potentials of MIMO communications systems are not al-
ways achievable even for a fully uncorrelated transmit and
receive channels, which is attributed to the rank deficiency of
the MIMO channels known as the keyhole or pinhole effect
[2]. The existence of the keyhole MIMO channels has been
proposed and demonstrated through physical examples, where,
although spatially uncorrelated, these channels still have a
single degree of freedom [2]-[3]. Under the keyhole effect,the
entries of the channel matrix,H, follow statistics described as
a product of two independent single-path gains.

A. The MIMO keyhole channel model

From [4], the complex path gain of baseband equivalent
signal transmitted over the channel between thei-th transmit
and thej-th receive antenna at arbitrary momentt is expressed
as1 ≤ i ≤M, 1 ≤ j ≤ N

hij(t) = αi(t)βj(t)e
j(φi(t)+ψj(t)), (18)

where
{

αi(t)e
jφi(t)

}M

i=1
are the complex path gains intro-

duced by the rich-scattered channel from thei-th transmitting
antenna to the “keyhole”, and

{

βj(t)e
jψj(t)

}N

j=1
are the com-

plex path gains introduced by the rich-scattered channel from
the “keyhole” to thej-th receiving antenna. Phases{φi(t)}Mi=1

and {ψj(t)}Nj=1 are independent and uniformly distributed

over [0, 2π). The amplitudes{αi(t)}Mi=1 and {βj(t)}Nj=1 are
i.i.d. Nakagami-m RVs. The fading severity parameters of
αi(t) are equal tomT , whereasΩT = E[α2

i ] for all i. Simi-
larly, the fading severity parameters ofβj(t) are equal tomR,
whereasΩR = E[β2

j ] for all j. Assuming mobility of both
the transmitter and the receiver with respect to the “keyhole”,
all channel gains are time-correlated random processes with
maximum Doppler shiftsfαi

= fα andfβi
= fβ, respectively.
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Fig. 1. Normalized LCR for various number of transmit and receive antennas

Under such conditions, the time derivativesα̇i and β̇j are
independent fromαi and βj , respectively, and both follow
zero-mean Gaussian PDFs with variances given by (4),σ2

α̇i
=

(πfα)
2ΩT /mT , 1 ≤ i ≤ M and σ2

β̇j
= (πfβ)

2ΩR/mR,
1 ≤ j ≤ N .

B. Orthogonal space-time block coding and decoding

The orthogonal spacetime block encoding and decoding
(signal combining) transform a MIMO fading channel into
an equivalent single-input-single-output (SISO) fading channel
with a path gain of the squared Frobenius norm of the MIMO
channel matrixH(t) = [hij(t)]M×N [4],

||H(t)||2F =
M
∑

i=1

N
∑

j=1

|hij(t)|2 =

(

M
∑

i=1

α2
i (t)

)





N
∑

j=1

β2
j (t)





(19)
at arbitrary momentt. After space-time block decoding, the
instantaneous output signal-to-noise ratio (SNR) per symbol
is given by

γ(t) =
γ̄

MR
||H(t)||2F , (20)

where γ̄ = Es/N0 is the average SNR per receive antenna,
andR is the rate of the STBC.

C. Second order statistics of output SNR

We introduce the auxiliary random processZ(t) defined by

Z(t) =
√

||H(t)||2F = X(t)Y (t) , (21)

whereX(t) =

√

∑M

i=1 α
2
i (t) andY (t) =

√

∑N

j=1 β
2
j (t) are

again Nakagami-m distributed with PDFs given by (2) and
(3), respectively, withmX = MmT , ΩX = MΩT , mY =
NmR andΩY = NΩR. The time derivativesẊ and Ẏ are
independent fromX andY , respectively, and both follow the
zero-mean Gaussian PDF with variances given by (4),σ2

Ẋ
=

σ2
α̇i

= (πfα)
2ΩT /mT andσ2

Ẏ
= σ2

β̇j
= (πfβ)

2ΩR/mR.
Hence, the random processZ(t), defined by (21), is a

double Nakagami-m process for which we can apply the
analytical framework of Section II to determine its exact and
approximate LCR and AFD by using (9), (11), (16) and (17).
With above in mind, the LCR and the AOD1 of instantaneous

1Instead of the term ”average fade duration (AFD)”, the term ”average
outage duration (AOD)” is used here.
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Fig. 2. Normalized AOD for various number of transmit and receive antennas

output SNR, given by (20), are respectively determined as

Nγ(γ) = NZ(
√

γMR/γ̄) , (22)

Tγ(γ) = TZ(
√

γMR/γ̄) . (23)

IV. N UMERICAL RESULTS

We present several numerical examples for the LCR and the
AFD of the STBC MIMO communications system operating
over a keyhole fading channel. The mobile transmitter and
the mobile receiver are assumed to introduce same maximum
Doppler shifts due to same relative speeds with respect to the
“keyhole”, yieldingfα = fβ = fm.

Figs. 1 and 2 depict the normalized LCR (Nγ/fm) and
normalized AFD (Tγ fm) of the instantaneous output SNR vs.
normalized SNR threshold. The normalized SNR threshold (x-
axis) is calculated as10 log[γ MR/(γ̄(ΩT /mT )(ΩR/mR))].
The results are obtained for three different pairs of numberof
transmit and receive antennas(M,N), appearing as curve pa-
rameters. For each pair(M,N), the three comparative curves
on both figures indicate excellent match between the exact and
the approximate solutions for the two statistical parameters,
both of which are validated by Monte Carlo simulations.
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