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Abstract

Recent advances in random matrix theory have spurred the adoption of eigenvalue-based detection

techniques for cooperative spectrum sensing in cognitive radio. These techniques use the ratio between

the largest and the smallest eigenvalues of the received signal covariance matrix to infer the presence

or absence of the primary signal. The results derived so far are based on asymptotical assumptions,

due to the difficulties in characterizing the exact eigenvalues ratio distribution. By exploiting a recent

result on the limiting distribution of the smallest eigenvalue in complex Wishart matrices, in this paper

we derive an expression for the limiting eigenvalue ratio distribution, which turns out to be much more

accurate than the previous approximations also in the non-asymptotical region. This result is then applied

to calculate the decision sensing threshold as a function ofa target probability of false alarm. Numerical

simulations show that the proposed detection rule providesa substantial improvement compared to the

other eigenvalue-based algorithms.

I. INTRODUCTION

Blind detection algorithms, relying on the received signaldiversity achieved through multiple antennas,

user cooperation, or oversampling, have been recently proposed for Cognitive Radio. Most of these

methods [1], [2] are based on the properties of the eigenvalues of the received signal’s covariance matrix

and use results from random matrix theory (RMT).

Their main advantage, with respect to classical energy detection (ED) or cyclostationary feature

detection (CFD) [3], is that they do not require any prior information on the primary signal or on
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the noise power. Among blind algorithms, the eigenvalue-based approach was shown to outperform ED,

especially in case of noise uncertainty [2].

However, the decision rules of the eigenvalue-based detection schemes proposed so far are based on

asymptotical approximations, that make them inaccurate inmany practical scenarios. Using some recent

RMT results, in this paper we first derive an analytical expression for the limiting distribution of the ratio

between the largest and the smallest eigenvalues of the covariance matrix. Then, based on this result,

we obtain a novel decision rule that outperforms the previously proposed eigenvalue-based detection

schemes.

The rest of the paper is organized as follows: Sec. II reviewsthe eigenvalue-based algorithms proposed

in the literature. Sec. III deals with the threshold optimization problem and presents the contribution of

this paper. Numerical results are presented and discussed in Sec. IV. Sec. V contains the conclusions.

II. M ATHEMATICAL BACKGROUND

A. System Model

Denote withK the number of collaborating receivers (or antennas) and with N the number of samples

collected by each receiver during the sensing time; letyk(n) be the discrete baseband sample at receiver

k (k = 1, . . . ,K) and time instantn (n = 1, . . . , N ). Two hypotheses exist: underH0 (no primary signal:

the samples contain only noise)yk(n)|H0 = v(n), wherev(n) is circularly symmetric complex Gaussian

(CSCG) noise with zero mean and varianceσ2
v ; underH1 (presence of primary signal)yk(n)|H1 =

hk(n)s(n) + v(n), wheres(n) is the primary signal, withE|s(n)|2 = σ2
s 6= 0, andhk(n) is the channel

between primary source and receiverk at timen.

Let y(n) = [ y1(n) . . . yK(n)]T be aK × 1 vector containingK received samples at timen and

Y = [y(1) . . . y(N)] a K × N matrix containing all the samples received during the sensing period.

The sample covariance matrix,R(N) = 1

NYYH , converges toR = E[yyH ] for N → ∞: from the

eigenvalues ofR(N) it is possible to infer the presence or absence of primary signal.

B. Previous Results

Let λmax andλmin be the largest and the smallest eigenvalues ofR(N), andlmax andlmin those of the

normalized covariance matrix, defined asR′(N) = N
σ2
v

R(N). UnderH0, R′(N) turns out to be a complex

white Wishart matrix and, by the Marchenko-Pastur law, the eigenvalue support is finite [4]. UnderH1, the

covariance matrix belongs to the class of ‘spiked population models’ and its largest eigenvalue increases

outside the Marchenko-Pastur support [5]. This property suggests to useT = lmax/lmin = λmax/λmin
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as test statistic for signal detection. Denoting asγ the decision threshold, the detector decides forH0 if

T < γ, for H1 otherwise. Two approaches to setγ are proposed in the literature.

1) Asymptotic Approach [1]: Thanks to the asymptotical properties of Wishart matrices [4], the

smallest and the largest eigenvalues ofR′(N) underH0) converge almost surely to

lmin → a =
(

N1/2 −K1/2
)2

(1)

lmax → b =
(

N1/2 +K1/2
)2

(2)

in the limit

N,K → ∞ with K/N → c (3)

wherec ∈ (0, 1) is a constant. UnderH1, according to the theory of spiked models, the largest eigenvalue

converges almost surely to a valueb′ > b [5]. Based on these results, an asymptotic detection rule was

proposed in [1] with decision threshold

γas =
b

a
(4)

2) Semi-asymptotic Approach [2]: This approach is based on the use of the recently-found limiting

distribution of lmax instead of its asymptotical value (2). Results from [6] state that under the same

assumptions (3) the random variable

Lmax =
lmax − b

ν
(5)

with

ν =
(

N1/2 +K1/2
) (

N−1/2 +K−1/2
)1/3

(6)

converges in distribution to the Tracy-Widom law1 of order 2. The authors of [2] exploit this result to

link the decision threshold to the probability of false alarm, defined as

Pfa = P (T > γ|H0) (7)

by using the asymptotical limit (1) for the smallest eigenvalue and the Tracy-Widom cumulative distri-

bution function (CDF) for the largest one. The threshold canbe written as:

γsa = γas ·
(

1 +
(
√
N +

√
K)−2/3

(NK)1/6
F−1

TW2
(1− Pfa)

)

(8)

whereF−1

TW2
(y) is the inverse Tracy-Widom CDF of order 2.

1The Tracy-Widom distribution was defined in [7] as:

FTW2(s) = exp
(

−
∫ +∞

s
(x− s)q2(x)dx

)

, whereq(s) is the solution of the Painlevé II differential equationq′′(s) = sq(s)+

2q3(s) satisfying the conditionq(s) ∼ −Ai(s) (the Airy function) for s → +∞. For its importance in RMT this distribution

has been extensively studied and tabulated; a Matlab routine to compute is available at [8].
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III. E IGENVALUE RATIO DISTRIBUTION AND NEW DETECTION THRESHOLD

The asymptotic approach (Sec. II-B1) uses limiting approximations, valid for very largeN andK.

In practical conditions, that may be characterized by smallnumber of observations due to time-varying

channel and/or detection in the shortest possible time, the asymptotic threshold turns out to be very

unbalanced with respect to the actual eigenvalue ratio distribution (see next section, Fig. 1). In addition,

this approach does not allow to tune the threshold as a function of a targetPfa. The semi-asymptotic

approach (Sec. II-B2) allows such a control, but it is still based on the asymptotical limit for the smallest

eigenvalue and it becomes inaccurate whenN decreases.

Recently, Feldheim and Sodin [9] found that the smallest eigenvalue also converges to to the Tracy-

Widom distribution asK,N → ∞, up to a proper rescaling factor. Thus, the random variable:

Lmin =
lmin − a

µ
(9)

converges in distribution to the Tracy-Widom law of order 2,with:

µ =
(

K1/2 −N1/2
) (

K−1/2 −N−1/2
)1/3

(10)

As a consequence of (3),µ is always negative in the considered range ofc. Now, the test statisticT may

be written as:

T =
lmax

lmin
=

νLmax + b

µLmin + a
(11)

Denote withf lmax
(z) andf lmin

(z), respectively, the limiting probability density functions (PDFs) of

the numerator and the denominator ofT for K,N → ∞. From (5) and (9), these PDFs may be expressed

through a linear random variable transformation of the second-order Tracy-Widom PDF,fTW2(x):

f lmax
(z) =

1

ν
fTW2

(

z − b

ν

)

(12)

and, recalling thatµ < 0:

f lmin
(z) =

1

|µ|fTW2

(

a− z

|µ|

)

= − 1

µ
fTW2

(

z − a

µ

)

(13)

Finally, assumingf lmax
(z) and f lmin

(z) as independent (which is reasonable for limiting distributions,

with the size ofR′(N) tending to infinity) and applying the ratio distribution formula [10], we can write

the PDF ofT as:

fT |H0
(t) =

[
∫

+∞

−∞
|x|f l1,lK (tx, x)dx

]

· I{t>1}

=

[
∫

+∞

0

xf l1(tx)f lK (x)dx

]

· I{t>1} (14)
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Fig. 1. Eigenvalue ratio CDF obtained using the novel ratio-based approach vs. empirical CDF, asymptotical approach, and

semi-asymptotic approach.N = 1000, K = 50.

where the lower integration limit has been changed to0 instead of−∞, since the covariance matrix is

positive-semidefinite therefore all the eigenvalues are non-negative;I{·} is an indicator function, with the

condition t > 1 to preserve the order of the eigenvalues (l1 > lK).

Given this new result, we can now introduce a sensing algorithm based on this limiting eigenvalue

ratio distribution. LetF T (t) be the cumulative density function (CDF) corresponding to (14). From (7),

the false alarm probability isPfa = 1 − F T (γ), for largeN andK; hence, we derive the the novel

decision threshold as a function of the false-alarm probability:

γrd = F
−1

T (1− Pfa) (15)

In practical applications the values ofF−1

T (.), evaluated numerically off-line, can be stored in a look-up

table and then used by the receiver to set the proper threshold as a function ofN , K, and the targetPfa.

(Note that a look-up table or a similar approach is also needed for implementing (8), sinceF−1

TW2
does

not have a closed-form expression).

IV. N UMERICAL RESULTS

Fig. 1 represents the eigenvalue ratio CDF resulting from the novel analytical approach and compares

it to the empirical distribution, computed by Monte-Carlo simulation, and to those obtained from the two

approaches of Sec. II-B. The number of samples was set toN = 1000 and the number of cooperating

receivers toK = 50. The novel analytical CDF matches with the empirical data, whereas the asymptotic

one (which is simply a step function) and the semi-asymptotic one are very unbalanced because the

considered parameters (N = 1000 samples andK = 50 receivers), although large, are still far from the
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Fig. 2. Complementary ROC: the novel ratio-based approach vs. asymptotical approach, semi-asymptotic approach, and energy

detection.N = 1000, K = 50, SNR = −21dB.

asymptotical region. From the detector’s point of view, this means that neither the asymptotic nor the

semi-asymptotic approach allow to set the decision threshold correctly according to the targetPfa.

Fig. 2 provides a performance comparison of the considered eigenvalue-based detectors, plus the

traditional energy detector using a cooperative equal gaincombining scheme [11]. This type of graph,

commonly used for signal detection and called Complementary-ROC (Receiver Operating Characteristics),

represents the achievable probability of missed detectionPmd = P (T < γ|H1) vs. the targetPfa. The

simulation parameters are againN = 1000 and K = 50; the average signal-to-noise ratio underH1,

defined as SNR= ‖h‖2σ2

s

Kσ2

v

with ‖h‖2 =
∑K

k=1 |hk|2, is equal to−21 dB. Such low values of SNR

are typically used to evaluate detectors in critical conditions (e.g., in the case of “hidden node”). For

energy detection, a noise uncertainty of0.25 dB is assumed, whereas the eigenvalue-based algorithms are

insensitive to the noise power uncertainty. The ROC plot shows that the novel ratio-distribution threshold

provides lower probabilities of missed detection than the other approaches for any given probability of

false alarm. Since the new algorithm uses a nearly-exact distribution, it allows to choose the lowest

possible threshold for a given targetPfa, i.e., to obtain the minimum value ofPmd.

For instance, given a targetPfa of 10−1, the novel approach provides aPmd of 1.0 · 10−2, while the

semi-asymptotic approach would give6.5 · 10−2. The asymptotical approach, as previously mentioned,

does not allow any control ofPmd vs.Pfa since the threshold is fixed. The pair of(Pfa, Pmd) it achieves

is represented by a dot in the figure, at (4 · 10−3, 1.15 · 10−1); this value ofPmd = 1.15 · 10−1 is a lower

bound that cannot be improved regardless of the targetPfa, as highlighted by the straight dashed line.
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V. CONCLUSION

In this paper an expression for the limiting eigenvalue ratio distribution in Wishart matrices has been

derived and it has been applied to the problem of signal detection in cognitive radio. The analytical

distribution has been shown to be consistent with the empirical data and, for this reason, the novel

detection rule clearly outperforms the previously proposed ones especially for realistic numbers of sensing

samples and cooperative receivers.
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