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Abstract

Recent advances in random matrix theory have spurred thatiadoof eigenvalue-based detection
techniques for cooperative spectrum sensing in cognitigéor These techniques use the ratio between
the largest and the smallest eigenvalues of the receivedlsapvariance matrix to infer the presence
or absence of the primary signal. The results derived so farbased on asymptotical assumptions,
due to the difficulties in characterizing the exact eigemealratio distribution. By exploiting a recent
result on the limiting distribution of the smallest eigelmeain complex Wishart matrices, in this paper
we derive an expression for the limiting eigenvalue ratistribution, which turns out to be much more
accurate than the previous approximations also in the sgmptotical region. This result is then applied
to calculate the decision sensing threshold as a functi@ntafget probability of false alarm. Numerical
simulations show that the proposed detection rule provadesbstantial improvement compared to the

other eigenvalue-based algorithms.

. INTRODUCTION

arxiv:0902.1947v2 [cs.IT] 3 Jun 2009

Blind detection algorithms, relying on the received sigaigkrsity achieved through multiple antennas,
user cooperation, or oversampling, have been recentlyoseap for Cognitive Radio. Most of these
methods [1], [2] are based on the properties of the eigeagaddi the received signal’'s covariance matrix
and use results from random matrix theory (RMT).

Their main advantage, with respect to classical energyctete (ED) or cyclostationary feature

detection (CFD) [3], is that they do not require any priorommation on the primary signal or on
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the noise power. Among blind algorithms, the eigenvalugeldeapproach was shown to outperform ED,
especially in case of noise uncertainty [2].

However, the decision rules of the eigenvalue-based detesthemes proposed so far are based on
asymptotical approximations, that make them inaccurateany practical scenarios. Using some recent
RMT results, in this paper we first derive an analytical expiren for the limiting distribution of the ratio
between the largest and the smallest eigenvalues of theigoga matrix. Then, based on this result,
we obtain a novel decision rule that outperforms the prelipproposed eigenvalue-based detection
schemes.

The rest of the paper is organized as follows: §éc. Il revihesigenvalue-based algorithms proposed
in the literature. Sed_lIl deals with the threshold optiatian problem and presents the contribution of

this paper. Numerical results are presented and discussgda[1V. Sed._V contains the conclusions.

[I. MATHEMATICAL BACKGROUND
A. System Model

Denote withK the number of collaborating receivers (or antennas) andl Withe number of samples
collected by each receiver during the sensing timeyji¢t) be the discrete baseband sample at receiver
k(k=1,...,K)andtimeinstant (n = 1,..., N). Two hypotheses exist: undef, (no primary signal:
the samples contain only noisg)(n)|#Ho = v(n), wherev(n) is circularly symmetric complex Gaussian
(CSCG) noise with zero mean and variancg under?#; (presence of primary signal),(n)|H; =
hi(n)s(n) +v(n), wheres(n) is the primary signal, witfE|s(n)|? = o2 # 0, andhy(n) is the channel
between primary source and receiveat timen.

Let y(n) = [y1(n)...yx(n)]" be aK x 1 vector containingK received samples at time and
Y = [y(1)...y(N)] a K x N matrix containing all the samples received during the sensgieriod.

1

The sample covariance matriR(N) = +YY*, converges tdR = E[yy”] for N — oco: from the

eigenvalues oR (V) it is possible to infer the presence or absence of primanyasig

B. Previous Results

Let A0 @nd N, be the largest and the smallest eigenvalueB V), andl, ., andi,,;, those of the
normalized covariance matrix, definedR§N) = %R(N). Under#,, R/(N) turns out to be a complex
white Wishart matrix and, by the Marchenko-Pastur law, ihemvalue support is finite [4]. Undé&t,, the
covariance matrix belongs to the class of ‘spiked poputatimdels’ and its largest eigenvalue increases

outside the Marchenko-Pastur support [5]. This propertygests to USE" = laz/lmin = Amaz/Amin

June 15, 2021 DRAFT



as test statistic for signal detection. Denotingyathe decision threshold, the detector decidesHarif
T < ~, for H; otherwise. Two approaches to setire proposed in the literature.
1) Asymptotic Approach [1]: Thanks to the asymptotical properties of Wishart matricgls the

smallest and the largest eigenvaluesRIf V) under?,) converge almost surely to

2
lnin — a = (N'? = K'/?) @
2
Lnaw — b= (N1/2 + K1/2) )
in the limit
N,K — oo with K/N — ¢ 3

wheree € (0,1) is a constant. Unde¥;, according to the theory of spiked models, the largest emjar
converges almost surely to a valtle> b [5]. Based on these results, an asymptotic detection rue wa

proposed in [1] with decision threshold

b
Yas = — 4)
a

2) Semi-asymptotic Approach [2]: This approach is based on the use of the recently-founditignit
distribution of /., instead of its asymptotical valuel(2). Results from [6] estétat under the same
assumptiond (3) the random variable

Lma:v _ lmax - b (5)
14

with
1/3
v= (N2 KV2) (N2 g2 ! (6)
converges in distribution to the Tracy-Widom Biwf order 2. The authors of [2] exploit this result to

link the decision threshold to the probability of false aladefined as
Pio = P(T > ~[Ho) (7)

by using the asymptotical limif{1) for the smallest eigdneaand the Tracy-Widom cumulative distri-

bution function (CDF) for the largest one. The threshold banwritten as:

—2/3
Ysa = Yas * (1 + (\/N(;I}/)};_{/; FTTI/IV2(1 - Pf(l)) (8)

where Fir1, (y) is the inverse Tracy-Widom CDF of order 2.

1The Tracy-Widom distribution was defined in [7] as:
Frwa(s) = exp (— [ - s)q2(m)dm), whereq(s) is the solution of the Painlevé Il differential equatigh(s) = sq(s) +
2¢°(s) satisfying the conditiony(s) ~ —Ai(s) (the Airy function) fors — +oc. For its importance in RMT this distribution

has been extensively studied and tabulated; a Matlab etbirtompute is available at [8].

June 15, 2021 DRAFT



[1l. EIGENVALUE RATIO DISTRIBUTION AND NEW DETECTION THRESHOLD

The asymptotic approach (Séc. 1[iB1) uses limiting apprations, valid for very largeV and K.
In practical conditions, that may be characterized by smathber of observations due to time-varying
channel andor detection in the shortest possible time, the asymptbtieshold turns out to be very
unbalanced with respect to the actual eigenvalue ratioilolision (see next section, Figl 1). In addition,
this approach does not allow to tune the threshold as a fumdif a targetP;,. The semi-asymptotic
approach (Se¢.I[-B2) allows such a control, but it is stdkbd on the asymptotical limit for the smallest
eigenvalue and it becomes inaccurate wiémecreases.

Recently, Feldheim and Sodin [9] found that the smallestmiglue also converges to to the Tracy-
Widom distribution ask’, N — oo, up to a proper rescaling factor. Thus, the random variable:

7

converges in distribution to the Tracy-Widom law of ordemath:

p= (12 - N2 (02— ) (10)

As a consequence dfl(3), is always negative in the considered range.dflow, the test statisti@” may

be written as:

lmax VLma:c +b
T = = 11
lmin ,ULmin +a ( )

Denote Withflmw(z) andflmm(z), respectively, the limiting probability density functefPDFs) of
the numerator and the denominatorfofor K, N — oo. From [5) and[(9), these PDFs may be expressed

through a linear random variable transformation of the sdearder Tracy-Widom PDFfry 2 (z):

Fi(2) = %fTWZ (z ; b) (12)
and, recalling thaj < 0:
—_ 1 a—z 1 zZ—a
fi.. () = mevm (W) = _;fTWZ ( . ) (13)

Finally, assumingf;, (z) and f; = (z) as independent (which is reasonable for limiting distiitns,
with the size of R'( V) tending to infinity) and applying the ratio distribution foula [10], we can write
the PDF ofT as:

— too
Fripa®) = | [ 1ol gt 2)ds] - Iy

/ T )T @)ooy (14)
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Fig. 1. Eigenvalue ratio CDF obtained using the novel radsed approach vs. empirical CDF, asymptotical approauh, a
semi-asymptotic approaclv = 1000, K = 50.

where the lower integration limit has been changed iastead of—oo, since the covariance matrix is
positive-semidefinite therefore all the eigenvalues aremegative;l,., is an indicator function, with the
conditiont > 1 to preserve the order of the eigenvalugsx ).

Given this new result, we can now introduce a sensing algoribased on this limiting eigenvalue
ratio distribution. LetF'r(¢) be the cumulative density function (CDF) correspondindZi)( From [7),
the false alarm probability i$>;, = 1 — Fr(y), for large N and K; hence, we derive the the novel

decision threshold as a function of the false-alarm prditgbi
Yea =Fp' (1 - Ppo) (15)

In practical applications the values E;:l(.), evaluated numerically off-line, can be stored in a look-up
table and then used by the receiver to set the proper theksisch function ofV, K, and the targer,.
(Note that a look-up table or a similar approach is also néddeimplementing[(B), sincei.‘?T‘Vlv2 does

not have a closed-form expression).

IV. NUMERICAL RESULTS

Fig.[ represents the eigenvalue ratio CDF resulting froenrtbvel analytical approach and compares
it to the empirical distribution, computed by Monte-Carlmslation, and to those obtained from the two
approaches of SeC. IltB. The number of samples was séf to 1000 and the number of cooperating
receivers toK = 50. The novel analytical CDF matches with the empirical dathergas the asymptotic
one (which is simply a step function) and the semi-asymptotie are very unbalanced because the

considered parameterd/(= 1000 samples ands = 50 receivers), although large, are still far from the
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Complementary-ROC: N=1000 K=50 SNR=-21dB

Ratio distribution approach
— — — Semi-asymptotical approach
— . — . Asymptotical approach: bound on Pm

d

@ Asymptotical approach: (Pm d,Pm)

“““““ Cooperative energy detection

‘ ‘
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Fig. 2. Complementary ROC: the novel ratio-based approaclhsymptotical approach, semi-asymptotic approach, aed)g
detection.N = 1000, K = 50, SNR = —21dB.

asymptotical region. From the detector’'s point of viewsthieans that neither the asymptotic nor the
semi-asymptotic approach allow to set the decision thidstarrectly according to the targét,,.

Fig. [2 provides a performance comparison of the considergeinealue-based detectors, plus the
traditional energy detector using a cooperative equal gambining scheme [11]. This type of graph,
commonly used for signal detection and called ComplemgR&C (Receiver Operating Characteristics),
represents the achievable probability of missed detedipn = P(T' < v|H1) vs. the targetPs,. The
simulation parameters are agavh = 1000 and K = 50; the average signal-to-noise ratio undey,
defined as SNR= % with ||h||> = YK | |n/?, is equal to—21 dB. Such low values of SNR
are typically used to evaluate detectors in critical caod# (e.g., in the case of “hidden node”). For
energy detection, a noise uncertainty0df5 dB is assumed, whereas the eigenvalue-based algorithms are
insensitive to the noise power uncertainty. The ROC plotshthhat the novel ratio-distribution threshold
provides lower probabilities of missed detection than thieeoapproaches for any given probability of
false alarm. Since the new algorithm uses a nearly-exattditon, it allows to choose the lowest
possible threshold for a given targg%,, i.e., to obtain the minimum value d?,,;.

For instance, given a targét;,, of 107!, the novel approach providesZa,; of 1.0 - 1072, while the
semi-asymptotic approach would gige5 - 10~2. The asymptotical approach, as previously mentioned,
does not allow any control af,,,; vs. Py, since the threshold is fixed. The pair @?,, P,q) it achieves
is represented by a dot in the figure, &t (0~3, 1.15-10~1); this value of P,y = 1.15-10~! is a lower
bound that cannot be improved regardless of the taRygt as highlighted by the straight dashed line.
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V. CONCLUSION

In this paper an expression for the limiting eigenvalueordistribution in Wishart matrices has been
derived and it has been applied to the problem of signal tdetein cognitive radio. The analytical
distribution has been shown to be consistent with the eogdidata and, for this reason, the novel
detection rule clearly outperforms the previously propbsees especially for realistic numbers of sensing

samples and cooperative receivers.
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