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Abstract—The partial transmit sequence (PTS) technique has
received much attention in reducing the high peak to average
power ratio (PAPR) of orthogonal frequency division multi-
plexing (OFDM) signals. However, the PTS technique requires
an exhaustive search of all combinations of the allowed phase
factors, and the search complexity increases exponentially with
the number of sub-blocks. In this paper, a novel method based
on parametric minimum cross entropy (PMCE) is proposed to
search the optimal combination of phase factors. The PMCE
algorithm not only reduces the PAPR significantly, but also
decreases the computational complexity. The simulation results
show that it achieves more or less the same PAPR reduction as
that of exhaustive search.

Index Terms—PTS, PAPR, OFDM, PMCE.

I. INTRODUCTION

In various high-speed wireless communication systems,

orthogonal frequency division multiplexing (OFDM) has been

used widely due to its inherent robustness against multipath

fading and resistance to narrowband interference [1]. However,

one of the major drawbacks of OFDM signals is the high

peak to average power ratio (PAPR) of the transmitted signal.

Several solutions have been proposed in recent years, such as

clipping [2], coding [3], selected mapping (SLM) [4], partial

transmit sequence (PTS) [5] and others [6]. The PTS [5]

technique is a distortionless technique based on combining

signal subblocks which are phase-shifted by constant phase

factors, which can reduce PAPR sufficiently. But the exhaus-

tive search complexity of the optimal phase combination in

PTS increases exponentially with the number of sub-blocks.

Thus many suboptimal PTS techniques have been developed.

the iterative flipping PTS (IPTS) in [7] has computational

complexity linearly proportional to the number of subblocks.

A neighborhood search is proposed in [8] by using gradient

descent search. A suboptimal method in [9] is developed

by modifying the problem into an equivalent problem of

minimizing the sum of the phase-rotated vectors.

In this paper, we propose a novel phase optimization

scheme, which can efficiently reduce the PAPR of the OFDM
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signals, based on the parametric minimum cross entropy

(PMCE) method [11]. The proposed scheme can search for

the nearly optimal combination of the initial phase factors.

The simulation results show that this scheme can achieve

a superior PAPR reduction performance, while requiring far

less computational complexity than the existing techniques

including the cross entropy approach [13].

II. OFDM SYSTEM AND PAPR

In an OFDM system, a high-rate data stream is split into

N low-rate streams transmitted simultaneously by subcar-

riers. Each of the subcarriers is independently modulated

by using a typical modulation scheme such as phase-shift

keying (PSK) or quadrature amplitude modulation (QAM).

The inverse discrete Fourier transform (IDFT) generates the

ready-to-transmit OFDM signal. For an input OFDM block

X = [X0, . . . , XN−1]
T , where N is the number of subcarriers,

the discrete-time baseband OFDM signal x(k) can therefore

be expressed as

x(k) =
1√
N

N−1∑

n=0

Xne
j2πnk
LN , k = 0, 1, · · · , LN − 1, (1)

where L is the oversampling factor. It was shown in [10]

that the oversampling factor L = 4 is enough to provide a

sufficiently accurate estimate of the PAPR of OFDM signals.

The PAPR of x(k) is defined as the ratio of the maximum

instantaneous power to the average power; that is

PAPR =

max
0≤n<LN

|x(k)|2

E[|x(k)|2] . (2)

III. PTS TECHNIQUES

The structure of the PTS method is shown in Fig. 1. The

input data block X is partitioned into M disjoint sub-blocks

Xm,m = 1, 2, . . .M such that X =
M∑

m=1
Xm. The sub-blocks

are combined in the time domain to minimize the PAPR. The

L-times oversampled time-domain signal of Xm is denoted as

xm,m = 1, 2, . . .M , which are obtained by taking an IDFT of

length NL on Xm concatenated with (L − 1)N zeros. Each

xm is multiplied by a phase-weighting factor bm = ejφm ,

where φm ∈ [0, 2π) for m = 1, 2, . . .M . The goal of the PTS

approach is to find an optimal phase-weighted combination to

minimize the PAPR. The combined transmitted signal in the

time domain can then be expressed as

x
′

(b) =

M∑

i=1

bixi, (3)

http://arxiv.org/abs/2003.06421v1
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Fig. 1. Block diagram of the PTS technique.

where x
′

(b) = [x
′

1(b), x
′

2(b), · · · , x
′

NL(b)].
In general, the selection of the phase factors is limited to

a set with a finite number of elements to reduce the search

complexity. The set of allowed phase factors is

P = {ej2πℓ/W |ℓ = 0, 1, . . . ,W − 1}, (4)

where W is the number of allowed phase factors. Thus, WM

sets of phase factors are searched for the optimal set of phase

factors. The search complexity increases exponentially with

M , the number of sub-blocks.

IV. MINIMIZE PAPR USING PARAMETRIC MINIMUM

CROSS ENTROPY (PMCE) METHOD

The Parametric Minimum Cross Entropy Method (PMCE)

was first proposed by Rubinstein [11] to solve rare event prob-

ability estimation and counting problems. It is a parametric

method to solve the well known Kullback Minimum Cross

Entropy (MinxEnt) problem [12]. The PMCE algorithm first

casts a deterministic optimization problem into an associate

rare-event probability estimation, then solves the resulting

program to obtain an optimally marginal distributions derived

from the optimal joint MinxEnt distribution. This method finds

the optimal parameters of the importance sampling distribution

to efficiently estimate the desired quantity. For an accurate

understanding of PMCE, the readers are referred to [11].

The minimum PAPR for PTS method is relative to the

following problem:

Minimize F (b) =
max |x′

(b)|2
E[|x′(b)|2] ,

s.t. b ∈ {ejφm}M ,

(5)

where φm ∈ { 2πk
W |k = 0, 1, . . . ,W − 1}. The phase factor

b = {−1, 1}M is chosen in this paper and generated by

using b = 1 − 2c from a binary vector c = {ci}M−1
i=0 . Thus

minimization of (5) is translated into the following problem:

Minimize F (c) =
max |x′

(1− 2c)|2
E[|x′(1− 2c)|2] ,

s.t. c ∈ {0, 1}M .

(6)

Each element of c can be modeled as an independent Bernoulli

random variable with the probability mass function P (ci =

1) = pi, P (ci = 0) = 1 − pi, for i = 0, 1, . . . ,M − 1. Then

the probability distribution of c is

f(c, p) =

M−1∏

i=0

pcii (1− pi)
1−ci . (7)

In order to solve (6) by using PMCE, we first randomize

the deterministic problem by f(c, p) for p ∈ [0, 1]M and

c ∈ {0, 1}M . That is to associate (6) with the problem of

estimating the probability P{F (c) ≤ γ} for a given PAPR

threshold γ.

The idea of the PMCE algorithm is to iteratively generate

the sequences γj and pj , which converge to the optimal

tuple γ∗ and p∗ in the sense of minimal cross entropy [11].

Then the optimal c∗ can be obtained from p∗ by f(c, p).
More specifically, we initialize the PMCE algorithm by setting

p = p0, and choosing a ρ ∈ (0, 1) (called rarity parameter in

PMCE [11]) such that the probability of the event {F (c) ≤ γ}
is around ρ. Each iteration of the PMCE consists of two main

phases [11]:

1) For a given pj−1, randomly generate a set of samples

c
j−1
1 , · · · , c

j−1
J from f(c, pj−1), and then calculate the PA-

PRs F (cj−1
1 ), · · · , F (cj−1

J ). Sort F (cj−1
1 ), · · · , F (cj−1

J ) in an

increasing order and denote it as F
j−1
(1 ) , · · · , F j−1

(J) . Assign

γj =
1

⌈ρJ⌉

⌈ρJ⌉∑

k=1

F
j−1
(k) , (8)

where ⌈·⌉ is the ceiling function.

2) The pj = (pj,0, · · · , pj,M−1) is updated as

pj,i =

∑J
k=1 I{c

j−1

k,i
=1} exp (−F (cj−1

k )λj)
∑J

k=1 exp (−F (cj−1
k )λj)

, (9)

where the indicator function I{x=1} = 1 if x = 1 and 0
otherwise, and the parameter λj are obtained from the solution

of the following equation [11]

γj =

∑J
k=1 F (cj−1

k ) exp (−F (cj−1
k )λj)∑J

k=1 exp (−F (cj−1
k )λj)

. (10)

In order to prevent a fast convergence to a local optimum,

instead of directly using (9), we use a smoothed version [11]

p̂j = αpj + (1− α)pj−1, (11)

where α (0 < α < 1) is called a smoothing parameter.

It is important to note that Eq. (9) is similar to the standard

CE heuristic formula (8) in [13], with the only difference that

the indicator function in the CE updating formula I{F (c
j−1

k
)≤γ}

is replaced by exp (−F (cj−1
k )λj). Eq. (9) is preferable to the

standard CE formula (8) in [13], because PMCE uses the

entire set of samples, whereas the standard CE only uses the

“elite” samples while updating p. A nearly optimal solution

c∗ that results in lower PAPR will be generated by the PMCE

method.

Our proposed PMCE PAPR-reduction algorithm can thus

be summarized as follows.
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Fig. 2. Comparison of PAPR reduction by different methods.

1) Initialize p̂0 = [0.5, 0.5, 0.5, . . . , 0.5], ρ, and α.

2) Generate J samples c
j−1
1 , . . . , c

j−1
J from the density

f(c, p̂j−1) and compute their PAPR F (cj−1
k ) for k =

1, · · · , J .

3) Compute γj by (8), and use (10) to find λj .

4) Update pj by (9).

5) Obtain the smoothed p̂j by (11).

6) If 0 < p̂j < 1 for some j, return to step 2. Otherwise,

output the optimal solution c∗ = 1− 2p∗ and stop.

V. SIMULATION RESULTS

In our simulation, quadrature PSK (QPSK) modulation

with N = 256 sub-carriers is used. In order to obtain

the complementary cumulative distribution function (CCDF)

Pr(PAPR > PAPR0), 105 random OFDM symbols are

generated. The transmitted signal is oversampled by a factor

of L = 4 for accurate PAPR [10].

In Fig. 2, the CCDF for the sub-blocks of M = 8 using

random partition is shown. In the PMCE algorithm, ρ = 0.1,

α = 0.6 and the sample numbers n = 40. When CCDF=
10−4, the PAPR of the conventional OFDM is 12 dB. The

PAPR of IPTS with (M − 1)W = 7 · 2 = 14 searches is

8.6 dB. The PAPRs of PMCE and CE with 22 searches are

7.4 dB and 7.5 dB respectively. The PAPR of the optimal PTS

(OPTS) with 28 = 256 searches is 7.4 dB. Compared to the

OPTS technique, PMCE thus offers more or less the same

PAPR reduction with lower complexity and obtains the nearly

optimal phase factors.

In Fig. 3, we compare the average number of searchers

of OPTS, PMCE, CE and IPTS for the thresholds T =
7, 7.25, 7.5, 7.75, 8, 8.25, 8.5, 8.75, 9. Here, these

algorithms are terminated whenever a phase factor that leads

to a PAPR below the threshold T is found. Fig. 3 reveals that

the PMCE has lower complexity than OPTS and IPTS for

all thresholds. For the thresholds between 7.75 dB and 9 dB,

PMCE and CE has the same complexity. For the thresholds

between 7 dB and 7.75 dB, PMCE has less searching complex-

ity than CE. Fig. 3 shows that PMCE achieves a low PAPR

and decreases the computational complexity.
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Fig. 3. Average numbers of searching for different methods with thresholds.

VI. CONCLUSION

In this paper, we propose a PMCE-based PTS algorithm.

The algorithm finds a nearly optimal combination of phase

factors for OFDM signals, with significantly reduced compu-

tational complexity. Simulation results show that our method

outperforms the existing methods both in the CCDF of PAPR

and the computational complexity.
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