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Abstract—In this letter, we study the performance of BICM-ID
with multiple interleavers (BICM-ID-M) in terms of bit-err or
rate (BER), and show that BICM-ID-M is well-suited to exploit
the unequal error protection (UEP) caused by the binary labéng.
We show that BICM-ID-M should always be the preferred
alternative for BICM-ID and that the gains obtained appear
even for the simplest configuration (.5-0.75 dB for a BER of

1077). It is found that conventional design paradigms such as

maximizing the free distance of the code should be modified.
Index Terms—BICM, BICM-ID, M-interleavers, UEP.

|. INTRODUCTION

IT-INTERLEAVED coded modulation (BICM) was
introduced in [1], analyzed in [2], [3], and is nowadays
the preferred alternative for CM over the Gaussian and

BICM-ID Channel

Fig. 1. BICM-ID model. The equivalent BICM channel is alscoim.
TABLE |
THE THREE MOST RELEVANT CONFIGURATIONS DEFINED BYK.
MUX Configuration obtained Analyzed in
K=m"11,, S-interleavers [2]
K =1 Original M-interleavers [1], [4]
K = II(I,n) Optimized M-interleavers [8]

fading channels [3, Sec. 1]. Its flexibility makes it very
attractive and it has made its way into a large number of
communication standards [3, Sec. 1]. By recognizing BICM as
a serial concatenation of code&dCM with iterative decoding
(BICM-ID) was introduced in [4]-[6]. BICM-ID exhibits a A System Model
waterfall and an error floor region, and it has been well gddi The BICM-ID system model is presented in Fig. 1, which
in the literature, cf. [7] and references therein. In BICDI-I can be considered a generalization of [8, Sec. II-A]. The
the binary labeling plays a key role and its optimizationallsu vectors of information bitsés with s = 1,... k. are
targets a decrease of the BER in the error floor region.  encoded by a ratd?. = k./n convolutional encoder. The
The original papers introducing BICM [1] and BICM-ID vectors of coded bitg; with ¢ = 1,...,n are fed to the
[4] postulated the application of multiple interleaverinterleaversry, ..., , which give statistically independent
(M-interleavers) connecting each of the encoder’s output tandomly permuted sequences= ;(¢;). The multiplexing
one modulator’s input. However, most of the existing liteara unit (MUX) assigns the bitg:; to the different bit positions
on BICM and BICM-ID follows the framework set in [2] in the symbol. We define the MUX using anx m matrix
and assumes the use of one single interleaver (S-interlavek, whose elements) < k;, < 1, represent the probability
BICM with M-interleavers were analyzed in [8] and shown tehat a bit from¢; is assigned to thejth outputw, with

II. SYSTEM MODEL AND PRELIMINARIES

offer gains when the modulation introduces UEP.

q =1,...,m. For simplicity, and since we are interested in the

In this letter, we study the error floor of BICM-ID-M. We original BICM(-ID) configuration(s), from now on, we only
prove that BICM-ID-M asymptoticallyalways outperforms considern = m and k;; € {0,1}. The three most relevant
BICM-ID with S-interleavers (BICM-ID-S) and that the gainsconfigurations in this case are shown in Table |, whige
obtained by using BICM-ID-M instead of BICM-ID-S appearandl,,, are the all-ones and the identity matrices, respectively,
even for the simplest configuration. We show that conveatfiorand wherdI(-) is a row permutation (see more details in [8]).

design paradigms for the encoder, e.g., the use of optimumAt any time instantt, the codewordb = [uy ¢, ..

distance spectrum (ODS) codes [9], should be modified.
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. 7um,t]
is mapped to a complex constellation symhok X using
a memoryless mapping : {0,1}™ — X, whereX C C,
and |X| = 2™. We analyze phase shift keying\-PSK)
modulation, i.e.x; = exp (—2Y=L) with j = 1,..., M;
extension to other modulations is straightforward. Thelsyin
are transmitted through an AWGN chanpek x+ z, wherez

is a circularly-symmetric complex Gaussian random vaeabl
with zero-mean and varianch,/2 in real/imaginary parts.
The bit energy-to-noise ratio i%—‘; = ﬁ The demapper
computes extrinsic L-values d$:*'(y) = Ug‘)s(y) — LP,
whereUP*(y) £ log %j}zi and LP™ £ log %Zjl];}* are
the a posteriori and a priori L-values féy, respectively.
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Let D £ {di,...,dp} be the set of squared Euclidearoutputs, and wherg®(w) can be calculated as described in
distances between the constellation points, whBre= % [8, Sec. llI-A]. The (truncated) union bound (UB) is given by
for M-PSK. For example, for 8-PSKD = 4, d; = 0.58, c
do = 2, d3 = 3.41, anddy = 4. The generalized Euclidean BER < UB = Zwﬁ w)PEP(w), (@)

we

distance spectrum (GEDS) of a constellation (see also [7,
Ch. 4]) is defined by then x D matrix P whose entriep,;  whereW £ {w € (Ng)™ : wfree < dogeiwg < w}, Ny is
are the number of pairs (normalized By/2) of constellation the set of nonnegative mtegerzf;frCC is the free distance of
points at distancel, such that their binary labelings differthe codeb is the truncation of the UB, anBEP (w) is the
in all the bit position except in theth one. We also define probability of detecting a sequence with generalized weigh
the generalized minimum Euclidean distance (GMED) of thastead of the transmitted all-zero sequence.

constellation byl with ¢ = 1, ..., m, which correspondsto  For a givenw, the decision variable passed to the decoder is

the squared Euclidean distance associated to the first mnze(v) = S(w;)+...+S(w,,) whereS(w,) = 317, Lff), and

element in theyth row of P'. For example, for 4-PSKI® = 2, \yhereL" are i.i. d. random variables with a pdf given by (1).
di = 2, do = 4) only two labelings with different GEDS | 4 (wq) Sy wq

= ——— be the multinomial coefficients which
exist: the Gray code (GC) and the anti-Gray code (AGC) [fepresents th tha nufmber of different ways of orderingbits in
App. A]. The GEDS of the AGC is given by, 1 = p22 =1,

N - subsets of41,...,7qp elements, where, = £ [Tq1s- ., TgD]-
P2 =p21 =0, df"™ = 2 anddy™ = 4, and for the GC by Theorem 1:The pdf ofS(w) can be expressed as
P11 =Dp21=1,pi2=p22=0, dﬁmn =dym = 2.

wq T‘ 1
(gq1)" ' @ (A A(R), 2A(R)),
B. Perfect Feedback and the BICM-ID Channel Re; H ( ) —1 Y (®), 24(R))
We use the so-called perfect feedback (PF) assumption to - N m D
analyze the error-floor region. This assumption states tHA4 I? eR [T ""’;m] » A(R) = Ny Zq 12!21 dirqr,
after a certain number of iterations, and for a sufficientft(w) = 2 {R e Ny Zl 1 Tq = Wg,q =1,...,m}, and

high signal-to-noise ratio (SNR), it can be assumed th@&€ mterpretOO as 1.
the a-priori L-values are large enough so that the demapper Proof: Because of the interleaving, the L-values are
knows all the bits except the one for which it is calculatinfidependent, and thus, the pdf 8{w,) is the convolution
the extrinsic L-value. This transforms the detection of thef w, copies of the Gaussian mixture in (1), i.e.,
high-order modulation into the detection of binary symbols D
and thus, the extrinsic L-values calculated by the demapper fsuw (/\) — Z (wq)H(ng)T‘”‘I’()\;%,%q),
®~! can be shown to be Gaussian-distributed [7, Ch. 4]. €V (wy) e/

For a given transmitted symbok labeled by b =
[b1,...,bm], it can be shown thal/s** (y|z) ~ N (u, 2|ul), whereV(w,) £ {ry € (No)” : 2,2, ry = w,}, where the
wherey = N; '(—1)bd and whered € D. Therefore, there lth element inr, represents the number of blts transmitted
exist D Gaussian distributions that can be used to modé$ing theith Gaussian distribution ant} = Ny 3" | dirg.
the extrinsic L-values, wheré depends on the transmittedThe pdf of S(w) is obtained by convolvmg the densities
symbol and the bit position, i.ed = d; only if py # 0. The fs(w,)(A), ¢=1,...,m, which completes the proof. ~ m

probability density function (pdf) of., is then given by By computlngPEP( ) as the tail integral of the pdf given
by Theorem 1, the following UB expression is obtained.

D .
Corollary 2: The UB in (2) can be expressed as
FrLaO) =" ga®(; p, 2um), 1) Y @ P
=1 UB= Y Z WE(R,G, )Q( A(R )/2). 3)
where ®(\; 1, 0%) is a Gaussian functiory,; is the (¢,{)th wEW' RER! (w

A

entry of them x D matrix G = KP which represents | oy, 2 . qC 0v R (w) 2 (R € R(w) :
the probability that thejth L-value is Gaussian distributed(n E)T)"}/\; 0 v{;ﬂl}e );\;dﬁ (w) # 0}, R'(w) £ {R € R(w) ;

with parameterg, 2u;), and wherey, = N, 'd; (assuming

b, = 0). Expression (1) states that the L- values passed to the c c (W, D ]

decoder (cf. the output of the BICM-ID channel in Fig. 1) WH (R, G, w) = 5" (w) (r >H(ng) « “4)
are modeled using a Gaussian mixture, where the structure g=1 N 17 =1

of the matrixK determines the weightg,, of the Gaussian The definitions 0%}’ andR’(w) guarantedV° (R, G, w) # 0
mixture in (1). Using (1), we replace the BICM-ID channefor anyw € W' andR € R/(w). Clearly, the multiplexingk
by a symmetric binary-input soft-output memoryless channgffects only the inner product in (4).

as shown in Fig. 1.

IIl. M AIN RESULTS AND CONCLUSIONS

C. Union Bound A. BICM-ID-M with 4-PSK
Let 3¢ (w) be the generalized weight distribution spectrum In Fig. 2 we show the BER performance of BICM-ID-M and
of a convolutional encoder, where theneralized weightv = BICM-ID-S for one of the simplest configurations one could

[wi,...,wy] gathers the weights, of each of the encoder’s think of, i.e., 4-PSK with the AGC and a rafe. = 1/2 ODS
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10 : - Corollary 4: For high SNR and a given codk the UB for
é N Tii%&{j Eldg BICM-ID-M is always smaller than the UB for BICM-ID-S.
ol N ---K=1I, (UB) The proof of Corollary 4 follows directly from the inequalit
LS £ BICMHD-S (Sim.) Af; > A% which holds for anyw. Corollary 4 states
107k iN: O  BICM-ID-M (Sim.)

that, for high SNR, BICM-ID-M should always be preferred
over BICM-ID-S, even if the MUX is not optimized. This
conclusion does not hold for (noniterative) BICM, cf. [8].

BER
5

C. Optimal Convolutional Codes

Corollary 2 allows us to express the asymptotic behavior of
the UB for the pairC, K] asUB =~ Q (1 /%), whereAd is
the argument of the dominant Q-function in the UB, i.e., the
smallestA(R) for the pair[C,K]. In the following, we define
the optimum convolutional codes (OCC).
: , , Definition 1 (OCC for BICM-ID): A convolutional code
o 1 2 3 4 5 6 C* is said to be optimal if there existsl&" such that, among

Ep/No [dB] all the other codes with the same constraint length and MUX

Fig. 2. BER performance of BICM-ID-M and BICM-ID-S. The sifation  cONfigurations, the paic™, K*] gives the largesti,
results are shown with markers and the bound in (3) with lines Definition 1 considers both the MUX and the code as one
entity, and does not assungé to belong to the set of codes
with maximum free distance, which we denote dby<.. An

X

convolutional code [9] of constraint lengthis = 3,5 (the exhaustive search showed that fr = 5,6 (wies = 7,8)
results fork = 7 will be discussed in Sec. 11I-C). The boundthere exist many codes with™* = wjiec — 1 that perform

in (3) is shown to agree with the simulations results, andgjaiequally good as the ODS codes, i.e., they give the safhe

of 0.5-0.75 dB are obtained for a BER 7 if K is properly For K = 7,9 (wie¢ = 10,12), this happens for codes with
selected. We note that the optimukn depends on the code,w™ = witee — 2, which shows that maximizing™ is not

and that for eact’, the two BICM-ID-M configurations give the criterion that defines optimal codes in this scenario.

a lower BER than BICM-ID-S. In the following subsection, The OCCs are defined asymptotically, which does not assure

we will prove that this is asymptotically always the case. their optimality for a finite SNR. Alternatively, we can us#) (
for a given SNR and search for a good p&itK]. As an

B. Optimality of BICM-ID-M example, we performed an exhaustive search for the optimal

* * Ey, _ _ ~ __ , free
The UB given by Corollary 2 is a sum of Weighted[c Kr]atxp =3.5dBfor K =7 andw = w™* +5, cf. (2).

free __ *
Q-functions. We are interested in the behavior of (3) formhig'Ve found the codgl15,177)s (w™* = 8) andK* = II(L)

SNR, and thus, the arguments of the Q-functions becorfePe optimal. Its performance is presented in Fig. 2. Gafns o

— 10-6 : :
relevant. We consider constellations with a GEDS such tHP dB for BER = 107" are obtained when compared with

dglin ”] d;r,xin for someq, ¢, i.e., constellations that introduceth® mogt cofmmon configuration, i.e., BICM-ID-S and the ODS
code withw'™e® = 10.

UEP (e.g., 4-PSK with the AGC). We definé as the

smallest element in the GMED of the constellation, ik% REFERENCES
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