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On BICM-ID with Multiple Interleavers
Alex AlvaradoStudent Member, IEEE,Leszek Szczecinski,Senior Member, IEEE, Erik Agrell, and Arne

Svensson,Fellow, IEEE

Abstract—In this letter, we study the performance of BICM-ID
with multiple interleavers (BICM-ID-M) in terms of bit-err or
rate (BER), and show that BICM-ID-M is well-suited to exploit
the unequal error protection (UEP) caused by the binary labeling.
We show that BICM-ID-M should always be the preferred
alternative for BICM-ID and that the gains obtained appear
even for the simplest configuration (0.5–0.75 dB for a BER of
10

−7). It is found that conventional design paradigms such as
maximizing the free distance of the code should be modified.

Index Terms—BICM, BICM-ID, M-interleavers, UEP.

I. I NTRODUCTION

B IT-INTERLEAVED coded modulation (BICM) was
introduced in [1], analyzed in [2], [3], and is nowadays

the preferred alternative for CM over the Gaussian and
fading channels [3, Sec. 1]. Its flexibility makes it very
attractive and it has made its way into a large number of
communication standards [3, Sec. 1]. By recognizing BICM as
a serial concatenation of codes,BICM with iterative decoding
(BICM-ID) was introduced in [4]–[6]. BICM-ID exhibits a
waterfall and an error floor region, and it has been well studied
in the literature, cf. [7] and references therein. In BICM-ID,
the binary labeling plays a key role and its optimization usually
targets a decrease of the BER in the error floor region.

The original papers introducing BICM [1] and BICM-ID
[4] postulated the application of multiple interleavers
(M-interleavers) connecting each of the encoder’s output to
one modulator’s input. However, most of the existing literature
on BICM and BICM-ID follows the framework set in [2]
and assumes the use of one single interleaver (S-interleavers).
BICM with M-interleavers were analyzed in [8] and shown to
offer gains when the modulation introduces UEP.

In this letter, we study the error floor of BICM-ID-M. We
prove that BICM-ID-M asymptoticallyalways outperforms
BICM-ID with S-interleavers (BICM-ID-S) and that the gains
obtained by using BICM-ID-M instead of BICM-ID-S appear
even for the simplest configuration. We show that conventional
design paradigms for the encoder, e.g., the use of optimum
distance spectrum (ODS) codes [9], should be modified.
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Fig. 1. BICM-ID model. The equivalent BICM channel is also shown.

TABLE I
THE THREE MOST RELEVANT CONFIGURATIONS DEFINED BYK.

MUX Configuration obtained Analyzed in
K = m

−11m S-interleavers [2]
K = Im Original M-interleavers [1], [4]

K = Π(Im) Optimized M-interleavers [8]

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

The BICM-ID system model is presented in Fig. 1, which
can be considered a generalization of [8, Sec. II-A]. The
vectors of information bitsis with s = 1, . . . , kc are
encoded by a rateRc = kc/n convolutional encoder. The
vectors of coded bits̃ci with i = 1, . . . , n are fed to the
interleaversπ1, . . . , πn which give statistically independent
randomly permuted sequencesci = πi(c̃i). The multiplexing
unit (MUX) assigns the bitsci to the different bit positions
in the symbol. We define the MUX using ann × m matrix
K, whose elements,0 ≤ kiq ≤ 1, represent the probability
that a bit from ci is assigned to theqth output uq with
q = 1, . . . , m. For simplicity, and since we are interested in the
original BICM(-ID) configuration(s), from now on, we only
considern = m and kiq ∈ {0, 1}. The three most relevant
configurations in this case are shown in Table I, where1m

andIm are the all-ones and the identity matrices, respectively,
and whereΠ(·) is a row permutation (see more details in [8]).

At any time instantt, the codewordb = [u1,t, . . . , um,t]
is mapped to a complex constellation symbolx ∈ X using
a memoryless mappingΦ : {0, 1}m → X , whereX ⊂ C,
and |X | = 2m. We analyze phase shift keying (M -PSK)
modulation, i.e.,xj = exp

(

− 2πj
√
−1

M

)

with j = 1, . . . , M ;
extension to other modulations is straightforward. The symbols
are transmitted through an AWGN channely = x+z, wherez
is a circularly-symmetric complex Gaussian random variable
with zero-mean and varianceN0/2 in real/imaginary parts.
The bit energy-to-noise ratio isEb

N0
= 1

N0kc
. The demapper

computes extrinsic L-values asU ext
q (y) = Upos

q (y) − Lpri
q ,

whereUpos
q (y) , log

Pr{bq=0|y}
Pr{bq=1|y} andLpri

q , log
Pr{bq=0}
Pr{bq=1} are

the a posteriori and a priori L-values forbq, respectively.
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Let D , {d1, . . . , dD} be the set of squared Euclidean
distances between the constellation points, whereD = M

2
for M -PSK. For example, for 8-PSKD = 4, d1 = 0.58,
d2 = 2, d3 = 3.41, andd4 = 4. The generalized Euclidean
distance spectrum (GEDS) of a constellation (see also [7,
Ch. 4]) is defined by them × D matrix P whose entriespql

are the number of pairs (normalized byM/2) of constellation
points at distancedl such that their binary labelings differ
in all the bit position except in theqth one. We also define
the generalized minimum Euclidean distance (GMED) of the
constellation bydmin

q with q = 1, . . . , m, which corresponds to
the squared Euclidean distance associated to the first nonzero
element in theqth row of P. For example, for 4-PSK (D = 2,
d1 = 2, d2 = 4) only two labelings with different GEDS
exist: the Gray code (GC) and the anti-Gray code (AGC) [7,
App. A]. The GEDS of the AGC is given byp1,1 = p2,2 = 1,
p1,2 = p2,1 = 0, dmin

1 = 2 anddmin
2 = 4, and for the GC by

p1,1 = p2,1 = 1, p1,2 = p2,2 = 0, dmin
1 = dmin

2 = 2.

B. Perfect Feedback and the BICM-ID Channel

We use the so-called perfect feedback (PF) assumption to
analyze the error-floor region. This assumption states that
after a certain number of iterations, and for a sufficiently
high signal-to-noise ratio (SNR), it can be assumed that
the a-priori L-values are large enough so that the demapper
knows all the bits except the one for which it is calculating
the extrinsic L-value. This transforms the detection of the
high-order modulation into the detection of binary symbols,
and thus, the extrinsic L-values calculated by the demapper
Φ−1 can be shown to be Gaussian-distributed [7, Ch. 4].

For a given transmitted symbolx labeled by b =
[b1, . . . , bm], it can be shown thatU ext

q (y|x) ∼ N (µ, 2|µ|),
whereµ = N−1

0 (−1)bqd and whered ∈ D. Therefore, there
exist D Gaussian distributions that can be used to model
the extrinsic L-values, whered depends on the transmitted
symbol and the bit position, i.e.,d = dl only if pql 6= 0. The
probability density function (pdf) ofLq is then given by

fLq
(λ) =

D
∑

l=1

gqlΦ(λ; µl, 2µl), (1)

whereΦ(λ; µ, σ2) is a Gaussian function,gql is the (q, l)th
entry of the m × D matrix G , KP which represents
the probability that theqth L-value is Gaussian distributed
with parameters(µl, 2µl), and whereµl = N−1

0 dl (assuming
bq = 0). Expression (1) states that the L-values passed to the
decoder (cf. the output of the BICM-ID channel in Fig. 1)
are modeled using a Gaussian mixture, where the structure
of the matrixK determines the weightsgql of the Gaussian
mixture in (1). Using (1), we replace the BICM-ID channel
by a symmetric binary-input soft-output memoryless channel
as shown in Fig. 1.

C. Union Bound

Let βC(w) be the generalized weight distribution spectrum
of a convolutional encoder, where thegeneralized weightw =
[w1, . . . , wm] gathers the weightswq of each of the encoder’s

outputs, and whereβC(w) can be calculated as described in
[8, Sec. III-A]. The (truncated) union bound (UB) is given by

BER ≤ UB =
∑

w∈W
βC(w)PEP(w), (2)

whereW , {w ∈ (N0)
m : ωfree ≤

∑m
q=1 wq ≤ ω̂}, N0 is

the set of nonnegative integers,wfree is the free distance of
the code,ŵ is the truncation of the UB, andPEP(w) is the
probability of detecting a sequence with generalized weight w

instead of the transmitted all-zero sequence.
For a givenw, the decision variable passed to the decoder is

S(w) = S(w1)+. . .+S(wm) whereS(wq) =
∑wq

i=1 L
(i)
q , and

whereL
(i)
q are i.i.d. random variables with a pdf given by (1).

Let
(

wq

rq

)

,
wq !

rq1 !...rqD ! be the multinomial coefficients which
represents the number of different ways of orderingwq bits in
subsets ofrq1, . . . , rqD elements, whererq , [rq1, . . . , rqD ].

Theorem 1:The pdf ofS(w) can be expressed as

fS(w)(λ) =
∑

R∈R(w)

m
∏

q=1

(

wq

rq

) D
∏

l=1

(gql)
rqlΦ (λ; ∆(R), 2∆(R)) ,

whereR , [rT
1 , . . . , rT

m]T, ∆(R) , N−1
0

∑m
q=1

∑D
l=1 dlrql,

R(w) , {R ∈ N
m×D
0 :

∑D

l=1 rql = wq, q = 1, . . . , m}, and
we interpret00 as 1.

Proof: Because of the interleaving, the L-values are
independent, and thus, the pdf ofS(wq) is the convolution
of wq copies of the Gaussian mixture in (1), i.e.,

fS(wq)(λ) =
∑

rq∈V(wq)

(

wq

rq

) D
∏

l=1

(gql)
rqlΦ (λ; δq, 2δq) ,

whereV(wq) , {rq ∈ (N0)
D :

∑D
l=1 rql = wq}, where the

lth element inrq represents the number of bits transmitted
using thelth Gaussian distribution andδq = N−1

0

∑D
l=1 dlrql.

The pdf of S(w) is obtained by convolving the densities
fS(wq)(λ), q = 1, . . . , m, which completes the proof.

By computingPEP(w) as the tail integral of the pdf given
by Theorem 1, the following UB expression is obtained.

Corollary 2: The UB in (2) can be expressed as

UB =
∑

w∈W′

∑

R∈R′(w)

W C(R, G, w)Q
(

√

∆(R)/2
)

. (3)

In (3) W ′ , {w ∈ W : βC(w) 6= 0}, R′(w) , {R ∈ R(w) :
(gql)

rql 6= 0 ∀q, l}, and

W C(R, G, w) = βC(w)
m
∏

q=1

(

wq

rq

) D
∏

l=1

(gql)
rql . (4)

The definitions ofW ′ andR′(w) guaranteeW C(R, G, w) 6= 0
for anyw ∈ W ′ andR ∈ R′(w). Clearly, the multiplexingK
affects only the inner product in (4).

III. M AIN RESULTS AND CONCLUSIONS

A. BICM-ID-M with 4-PSK

In Fig. 2 we show the BER performance of BICM-ID-M and
BICM-ID-S for one of the simplest configurations one could
think of, i.e., 4-PSK with the AGC and a rateRc = 1/2 ODS



ALVARADO ET AL.: BICM-ID WITH MULTIPLE INTERLEAVERS 3

0 1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

Eb/N0 [dB]

B
E

R

K = I2 (UB)
K = Π(I2) (UB)
K = 0.512 (UB)

BICM-ID-S (Sim.)
BICM-ID-M (Sim.)

K = 3
(5, 7)ODS

8

K = 5

(23, 35)ODS
8

K = 7

(133, 171)ODS
8

(115, 177)∗8

Fig. 2. BER performance of BICM-ID-M and BICM-ID-S. The simulation
results are shown with markers and the bound in (3) with lines.

convolutional code [9] of constraint lengthsK = 3, 5 (the
results forK = 7 will be discussed in Sec. III-C). The bound
in (3) is shown to agree with the simulations results, and gains
of 0.5–0.75 dB are obtained for a BER of10−7 if K is properly
selected. We note that the optimumK depends on the code,
and that for eachK, the two BICM-ID-M configurations give
a lower BER than BICM-ID-S. In the following subsection,
we will prove that this is asymptotically always the case.

B. Optimality of BICM-ID-M

The UB given by Corollary 2 is a sum of weighted
Q-functions. We are interested in the behavior of (3) for high
SNR, and thus, the arguments of the Q-functions become
relevant. We consider constellations with a GEDS such that
dmin

q 6= dmin
q′ for someq, q′, i.e., constellations that introduce

UEP (e.g., 4-PSK with the AGC). We defined as the
smallest element in the GMED of the constellation, i.e.,d ,

minq∈{1,...,m}{d
min
q }.

Lemma 3:The arguments of the dominant Q-functions in
the UB (3) for a givenw ∈ W ′ are

∆∗
M , N−1

0

m
∑

q=1

dmin
q wq, ∆∗

S , N−1
0 d

m
∑

q=1

wq,

for BICM-ID-M and BICM-ID-S, respectively.
Proof: For BICM-ID-M, GM = P, and therefore, the

solution of minR∈R′(w){∆M(R)} is obtained whenR is
such that all thewq bits are transmitted using the Gaussian
distribution associated todmin

q , ∀q. With this, we obtain the
expression for∆∗

M, which holds for anyG′
M = Π(GM).

For BICM-ID-S, GS = m−11mP. This matrix has a first
column with a nonzero entry determined byd. Moreover, all
the elements in this column are identical (and nonzero), and
therefore, the solution ofminR∈R′(w){∆S(R)} is obtained
when all the wq bits are transmitted using the Gaussian
distribution associated tod, ∀q. Using this, we obtain the
expression for∆∗

S, which concludes the proof.

Corollary 4: For high SNR and a given codeC, the UB for
BICM-ID-M is always smaller than the UB for BICM-ID-S.

The proof of Corollary 4 follows directly from the inequality
∆∗

M > ∆∗
S which holds for anyw. Corollary 4 states

that, for high SNR, BICM-ID-M should always be preferred
over BICM-ID-S, even if the MUX is not optimized. This
conclusion does not hold for (noniterative) BICM, cf. [8].

C. Optimal Convolutional Codes

Corollary 2 allows us to express the asymptotic behavior of

the UB for the pair[C, K] asUB ≈ Q
(
√

Ad

2N0

)

, whereAd is
the argument of the dominant Q-function in the UB, i.e., the
smallest∆(R) for the pair[C, K]. In the following, we define
the optimum convolutional codes (OCC).

Definition 1 (OCC for BICM-ID): A convolutional code
C∗ is said to be optimal if there exists aK∗ such that, among
all the other codes with the same constraint length and MUX
configurations, the pair[C∗, K∗] gives the largestAd.

Definition 1 considers both the MUX and the code as one
entity, and does not assumeC∗ to belong to the set of codes
with maximum free distance, which we denote byωfree

max. An
exhaustive search showed that forK = 5, 6 (ωfree

max = 7, 8)
there exist many codes withωfree = ωfree

max − 1 that perform
equally good as the ODS codes, i.e., they give the sameAd.
For K = 7, 9 (ωfree

max = 10, 12), this happens for codes with
ωfree = ωfree

max − 2, which shows that maximizingωfree is not
the criterion that defines optimal codes in this scenario.

The OCCs are defined asymptotically, which does not assure
their optimality for a finite SNR. Alternatively, we can use (3)
for a given SNR and search for a good pair[C, K]. As an
example, we performed an exhaustive search for the optimal
[C∗, K∗] at Eb

N0
= 3.5 dB for K = 7 andω̂ = ωfree+5, cf. (2).

We found the code(115, 177)8 (ωfree = 8) and K∗ = Π(I2)
to be optimal. Its performance is presented in Fig. 2. Gains of
0.5 dB for BER = 10−6 are obtained when compared with
the most common configuration, i.e., BICM-ID-S and the ODS
code withωfree = 10.
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