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Bounds on Stability and Latency
In Wireless Communication

Vicent Cholvi and Dariusz R. Kowalski

Abstract— In this paper, we study stability and latency of same time, in[[5] Chlebus et al. studied stability of some
routing in wireless networks where it is assumed that no colsion  distriputed broadcast protocols. However, they assumed a
will occur. Our approach is inspired by the adversarial queung  geanario in which the transmission range of each node reache
theory, which is amended in order to model wireless commu- . !
nication. More precisely, there is an adversary that specifis all the other r_10des. The maximum th_rou_ghput_, defined to
transmission rates of wireless links and injects data in suta Mean the maximum rate for which stability is achievable, was
way that an average number of data injected in a single round studied by Chlebus et al.][6]. Anantharamu et [al. [7] extende
and routed through a single wireless link is at mostr, for a given  this work by studying the impact of limiting the adversary by

€ (0,1). We also assume that the additional *burst” of data  45gigning independent rates of injecting data to each node.

injected during any time interval and scheduled via a singldink . e .
is bounded by a given parameterb. In this paper, we study stability in a scenario formed

Under this scenario, we show that the nodes following so caiti by @ multihop wireless network, where each node has a,
work-conserving scheduling policies, not necessarily the same, are possibly different, work-conserving scheduling policye \8ay
guaranteed stability (i.e., bounded queues) and reasongbbmall 5 scheduling policy isvork-conservingif it cannot be idle
data latency (i.e., bounded time on data delivery), for injetion long as there is data queued to be transmitted. Many
rates r < 1/d, where d is the maximum length of.aroutlng pgth. -k heduli licies like EIEO (Eirst-In-Ei
Furthermore, we also show that such a bound is asymptoticati W&!-KNOWnN Scheduling policies like (First-In-Firgt),
optimal on d. LIS (Longest-In-System), SIS (Shortest-In System), FTG

(Farthest-To-Go), NTS (Nearest-To-Source), etc., arekwor
conserving policies, whereas other policies like RountiRo
|. INTRODUCTION GPS (Generalized Processor Sharing), WFQ (Weighted Fair

In this paper, we consider a multihop wireless networ®ueueing), etc., are non-work-conserving.
where data is transmitted from its source node to its detima  Our main result shows that a network with nodes following a
node through other intermediate nodes. work-conserving scheduling policy is stable provided taead

One crucial issue to characterize the performance of a ngfection rate is lower thari /d, beingd the largest number
works is that ofstability. Roughly speaking, a communicationyf jinks that data can cross in the network. Furthermore, we
network system is said to be stable if data waiting to hgiso show that such a bound is asymptotically optimation
delivered (backlog) is finitely bounded at any single time. The rest of the paper is organized as follows. In Sedfibn Il
The importance of such an issue is obvious, since if ORg introduce our adversarial model and in Secfioh Il we

cannot guarantee stability, then one cannot hope for emgurpresent the main results about stability and latency oflese
deterministic guarantees for most of the network perfoteancommunication in the specified model.

metrics. One such metric latency defined as the maximum
time for delivering data from its source to its destinatitaiken
over all data occurring in the routing process.

Whereas in the last few years much of the analysis of worst-We use a modified version of the wireless adversarial model

case behavior of multihop wireline networks and schedulifgjoposed by Andrews et alll[4]. We consider a wireless
policies has been performed usiagversarialmodels, which multihop undirected network of nodes, where each node acts
try to create as much trouble for the scheduling algorithm @§ both a transmitter and a receiver. When data is transitte
possible [[1], [2], only a few papers have been focussed §@m its source node to its destination node and they arestoo f
wireless networks. In ]3], Borodin et al. considered a modaway from each other to communicate, data may go through
in which each node can transmit, at each time step, to all @ther nodes as intermediate hops. Each node contains a queue
neighbors, and show that the Nearest-to-Go schedulingypolfor each outgoing link and uses it to store there data to be sen
is stable. They also showed that the Longest-in-Systencyolilong the corresponding link. We assume that data is fluid-
is unstable. Andrews et al.][4], in a model in which a node cadike (in the sense that the unit to transmit can be as small as
transmit to only one neighbor at a time step, provided sor€eded), and that several pieces of data may be transmitted
fully distributed scheduling algorithms that ensure netwo along one link in one time step. Furthermore, we assume that
stability, both when the routes are specified by the adwers&ata units don't suffer collisiontsThis feature is similar to the
and when they are chosen by the nodes. wireline adversarial model, that also doesn’t take intcoact
Contrary to the previous papers, which assumed that d&gllisions between packets.

doesn't suffer collisions when several nodes transmit at th
1This can be achieved by making a specific channel assignnasedbon
Department of Computer Science, Universitat Jaume |, Q@steSpain. Time/Frequency/Code division or other methods for resgi\tontention in
Department of Computer Science, University of Liverpook.U the data-link layer.
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Time is divided into fixed slots. Each node can transmit aidmissibility condition of Eql]1 (combined with Elgl 2) says
different capacities in the interval, 1], which may or may that the total size of such a data is, on average, at most
not vary over time as a result of changing wireless channelStability. In order to formally define stability, we denote
conditions. We use;; (¢) to denote the rate at which nodean by d,, the number of links that a data unit has to cross.
transmit to node at time slott, also referred agansmission Furthermore, we denote by and f” the time instants that
rate. It is assumed that the transmission rate is defined over mbpectively arrives at and departs from title node on its
pair of nodes, since;;(t) can be set to zero if nodésand; routing path, wherd < i < d,. If p leaves itsith link in
are too far away from each other to communicate directfme stepf?, it will arrive at its (i + 1)st queue at time step
Furthermore, we assume that a node can transmit to onfy, = f/'. Finally, we denote byQ? the timep spends in
one neighbor at each time step. This is the main feature tfla¢ queue of théth node on its path, i.eQ? = f —a?. Let
distinguishes the wireless adversarial model from thelimee @Q = max, 1<i<a, Q.
one, in which a node is allowed to transmit to several nodesGiven an adversaryl (as defined above) and a scheduling
at the same time step. protocol P, we say a networlg is stableif Q < oo [4].

The time evolution is seen as a game betwesoheduling
queue policyvhich decides, at each time step, which data mudt!- STABILITY CONDITIONS AND LATENCY OF ROUTING

be transmitted (if any), and a boundadversarythat governs WITH WORK-CONSERVING SCHEDULING POLICIES
both thedata arrivals and thechannel conditionsi.e., the In this section, we obtain a formula for the threshold
transmission rates. value on data injection rate guaranteeing stability in lgge

The adversaryRegarding the data arrivals, at each time stepetworks with work-conserving scheduling policies (ir@des
the adversary injects a set of data into some of the nodescannot be idle as long as there data queued to be transmitted)
the network. More precisely, such an injection is defined Hyurthermore, we also estimate data latency for injectitesra
a pair of parameter&, r), whereb > 1 is a natural number below this threshold value.
and r satisfies) < r < 1. The parameteb (usually called = We remark that each node may have its own, possibly
burstinesy models the short bursts of data the adversary cdifferent, scheduling policy (FIFO, LIFO, Longest-in-$g,
inject into the network. The parameter(called theinjection etc.), as long as they are work-conserving. Furthermoee, th
rate) models the long-term rate at which data can be injectsdheduling policies don’t need to know the quality of the
into the network. The adversary is free to choose both thi@nsmission channels (i.e., the values of the rate véctors
source and the destination node for any injected data. d¢t akince they only take care of deciding the order in which data
specifies the routing path from the source to the destinatitntransmitted.
that data must follow. Paths don't include the same link more The following theorem provides a bound on the injec-
than once, and data is absorbed after traversing its route. tion rate that guarantees network stability under any work-
The adversary also controls the quality of channels betweenserving scheduling policies.
nodes, trying to create as much trouble for the schedulingTheorem 1:Any network in which all queues use a, possi-
policy as possible, by means of specifying the transmissi®fy different, work-conserving scheduling policy and date
rates. At each time slot and for each nogdehe adversary injected by a(b, r)-adversary, is stable for < 1, whered is
sets up the values of the rate vector; (t), r(t), ..., 7 (t)) the largest number of hops that any data unit traverses in the
before nodei makes its scheduling decision. These rates apgtwork. Furthermore, data latency is bounded from above by
not know to the scheduling algorithm. d%, where A denotes the maximum number of neighbors
In order for stability to be feasible, it is necessary to impo @ hode can have.
some restrictions on the adversary so that it would not be Proof: The proof has two parts. First, we show that if
able to fully load any link a priori. More specifically, we” < 5 then the maximum time interval data takes to cross any
require that the adversary satisfies the followirmissibility link is bounded, which implies stability. Second, we prokvatt
condition Let I;;(t) represent the total amount of data thaflata latency is also upper boundeddy>;, provided the first
the adversary injects at timteand has linkij on its path. We condition on stability- < 4 holds.
say that the adversarial injection asimissible for rate- and ~ In what follows, we denote a8/(i) the set of nodes that

burstb if there exist fractions:;; () € [0,1] such that are neighbors of nodée We also note that = maz,{d,}.
Remark 1:Note that we don’t assume, a priori, whether the

scenario formed by the network, the scheduling policy, &ed t
adversary, is stable or not. Thus, if it is unstable, the time
takes to leave itsth queue could be infinite (i.ef = o0).

Remark 2:Note that if f7 = oo (for somep) then@ = oco.

B 3 B iy However, we base our proof of finding under which conditions,
Z Lty <r Z rig(ay (1) +b, Vi, VI (2) Q < oo (which will automatically imply /7 < o).

Part (1): Letp be a data unit that attains the maximupn
where T, denotes a consecutive sequencezofime steps. (i.e., @ = Q) at theith node on its path. We will call the
One can viewz;;(t) as representing fractional decisions thequeue in this node théh queue of data.
indicate the assignment of data injected by the adversaryLetip be the oldest time step such that {})< a?, and (2)
that wishes to pass through nodeat each time step. Thein every step in(¢z, a?] the ith queue is non-empty. Hence,

> mii(t) =1, Vi, Vvt (1)
J

teT, teT,



we have that during the intervédg, f7] theith queue is non- links a data unit crosses until reaching its last queue, we ha

empty. that

Define ¢! as the set formed by all data units served by the )
ith queue during the intervél s, /7], and letp* be the oldest Q<rQd-1)+r(@Q-1)+[N@I-b
data unit ing? (i.e., ¥p' € ¢¢ (a > a¥)). Hence, by the Q<rQd—r+|N()|-b

definition of p*, all data in¢? must have been injected during
the intervalla?”, /7). It follows that @ < oo for r < 1/d.

Based on the above mentioned scenario and on the definitioff @'t (2): Consider a data unjt that traverses a path
of the adversarial modelp? = f* — a” is bounded by the with d, hops, whered, < d. This network satisfies the
maximum number of data units injected during the intervAroperty delivered in Part (1). Ca#i, the latency ofp and

[a?", f7 — 1] (i.e., the worst-case scenario is: where all daf§t & = max; |N(i)|. From the above derivation we see that

y bA—r bA
injected since the time instant until p is served, cross the Op = dpQ = dF755 < dy5g.

ith node ofp and is scheduled befogg minus the data served u
by theith queue ofp during the intervalts, a’]. Recall that
: . . » . : )
g]mepaishv\s/éeﬁécethe periodg, a?] the ith queue ofp is non IV, TIGHTNESS OF THE BOUNDS
PP In [8], Bennet et al. introduce a family of networks intended
K3 K3

7o to provide stability bounds in th&ireline model(we refer

- to the “standard” adversarial queueing model [1] for wireli
< Z (T‘ Z Tij(t)l'ij(t) +b) — Z Z n-j(t):vij(t) networks). q g [1]

j€N (i —aP" €N (i) t=t . o
JENE) =t pj W=t We denote asscenario the combination of a concrete
ol i network and a concrete adversarial strategy.
= > (1 Y raas® > e () +
JEN@)  t=a?” i=tp
-1 ay A. Description of the scenario i [8]
" _Zp rig (i (1) +b_t; Tij(t)xij(t)) The structure of the family of networks used inl [8] is
t=ait -7 illustrated in Figure 1 (here, we present a slightly modified
Now, taking into account that < 1, we have description of an equivalent network).
P —aP a) Network topology:: The network is formed by a
i i 1 collection of identical building blocks, arranged in a tree
tp—1 Ji —

structure of depth/. At each building block there ark — 1
< . Z (T Z rig(Q)ai;(t) +r Z rig (t)a; (t) + b) nodes (wheré > 3 represents the maximum number of hops a
JEN()  t=al t=aj+1 packet can traverse), each node having amgqueue. Within

' coming from nodes located in some other building blocks in

tp—1 i the lower level) and one internal input (i.e., coming frore th
fr—dl <y (7" Doow)+r Y wy(t) +b) preceding node of the same building blocks), except for the
JENGE)  t=g?” t=af+1 first one that has no internal input.

Let k be the hop number op* when it arrives to the Furthermore, each node has one interna! output that is
node wherep attains the maximumQ. Taking into ac- connected to thg subsequent no.de.’s internal input, exqapt.f
count the first admissibility condition (EQCI(1)) we have ttha"€ !ast one which forms the building block output which is
S v @i (t) = 1 for all ¢, wherez;;(t) € [0, 1]. Therefore, connected_ to the external input of some node in a building

JEN(D) T ’ block of higher level.

Il —al b) Traffic description:: Every building block has one
< r(tp — a’f*) +7(fP —a? = 1)+ |N(@)|- b internal source of traffic calledransit traffic which, after
traversing one internal node, feeds the next internal node,
except for the last one which feeds the building block output

*

= r(ts —af +a —al)+r(ff —al =)+ |N@)| b
—a

=r(tp—ay ) +r(ay —af )+r(ff —a —1)+ Also, each internal node is fed withh external sources of
IN(G)|-b traffic calledbuilding block inputswvhich, after traversing that
. internal node, is absorbed at the subsequent node or atghe fir
Sincea;, > tp, then we have node of some other building block in the upper 1Bvel

fi—al < rlag —ay ) +r(ff —af =1)+ NG| b

2At this point, we note that in[]8] the authors say thedffic from the
Sinceff _ af _ Qf =@ and ai* _ ap* < (d _ 1)Q, and building block input dies in a dgta sian_owever, it is equivalent to say that
k int t th is th . ti dat .tthey are absorbed after traversing one internal node ttey, are absorbed at

taken Into accoun af) is the maximum time a data uni the subsequent node or at the first node of some other buildogk in the

takes to cross a link, and — 1 is the maximum number of upper level).
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Fig. 1
NETWORK USED IN[8].



B. Simulating the scenario in]8] in the wireless case and the bound provided in Theorem 1 (i.¢/d) when we

. . . . i i i 1 L
In this section, we show how to simulate the scenarid in [chreased. We have that it behaves likgd) ~ ;=5 — 5 ~
in the wireless model: +z. Therefore, we have that our bound in Theorem 1 is

S.1 Each node uses a FIFO scheduling policy. ~ @Symptotically optimal within that limit.
S.2 We use the same network topology asin [8]. That

is, we use the same nodes and assume two nodes V. FUTURE WORK

can exchange packets directly if they are connectedAs a future work, we note that an interesting open question
in [8]. is to analyze the behavior of the system when the channel
S.3 The adversary in the wireless scenario sets gpnditions are not fully controlled by the adversary butythe
permanently the transmission ratesltfor the nodes fulfill some specific constrains.

that can exchange packets (as explained in S.2pand

for the remaining nodes. REFERENCES

S4 The adve.'rsanal S.trategy of Injecting packets al’ﬂﬂ M. Andrews, B. Awerbuch, A. Fernandez, T. Leighton, Ziul and
choosing their paths is exactly the same asIn [8]. "~ ;. Kleinberg, “Universal-stability results and perforrnanbounds for
In view of the network and traffic specification in Sec- greedy contention-resolution protocolspurnal of the ACM vol. 48,

. . . . no. 1, pp. 39-69, January 2001.
tion IV-A] and by simulation assumptions S.2 and S.4, ”19] J. Echague, V. Cholvi, and A. Fernandez, “Universalbgity results for

following property holds: low rate adversaries in packet switched network8EE Communication
Fact 1: Both in the scenario in][8] and the abov& Letters vol. 7, no. 12, pp. 578580, December 2003,

. . . ] A. Borodin, R. Ostrovsky, and Y. Rabani, “Stability pessing trans-
described wireless scenario, each node feeds to only formations: Packet routing networks with edge capacitied speeds,”

one node in the whole network. Journal of Interconnection Networksol. 5, no. 1, pp. 1-12, 2004.
[4] M. Andrews and L. Zhang, “Routing and scheduling in nmhaip wireless
. o _networks with time-varying channelsfCM Transactions on Algorithms
C. Summary of differences between the wireline scenario vol. 3, no. 3, 2007.
of [8] and the wireless model as described in SecfionllV-B [5] B- S. Chiebus, D. R. Kowalski, and M. A. Rokicki, *Adversal queuing
on the multiple-access channel,”"RODC '06: Proceedings of the twenty-
What distinguishes the collision-free wireless model from fifth annual ACM symposium on Principles of distributed cotimg.

the wireline model of([B] is that, in the wireless model: New York, NY, USA: ACM, 2006, pp. 92-101. . .
——, “Maximum throughput of multiple access channels oiversarial

D.1 A node feeds to only one neighbor at each time’ environments, Distributed Computingvol. 22, no. 2, pp. 93-116, 2009.

step. [7] L. Anantharamu, B. S. Chlebus, and M. A. Rokicki, “Adversl multiple

: _ access channel with individual injection rates,” @PODIS 2009, pp.
D._2 The adversary can dynamically set up the trans- = ™ o
mission rates for the links. [8] J. C. R. Bennett, K. Benson, A. Charny, W. F. Courtney, dnd. L.
D.3 The admissibility conditions are different (due Boudec_, “Delay jitter bounds and packet scale rate guazaexpedited
to differences D.1 and D 2) forwarding,” IEEE/ACM Trans. Netwvol. 10, no. 4, pp. 529-540, 2002.

Let us analyze these differences in the contexts of the
wireline scenario described inl[8] and its simulation in the
wireless model as described in Section IV-B:

o From Fact 1 we have that, in both scenarios, a node feeds
to only one node in the whole network. So, there is no
difference in both scenarios regarding D.1.

o Taking into account S.3, both scenarios are the same
regarding D.2.

« Since the general differences D.1 and D.2 do not hold in
the considered wireline and wireless scenarios, the admis-
sibility conditions (1) and (2) in the wireless scenario are
equivalent to the admissibility condition in the wireline
scenario. Then, there is no difference in both scenarios
regarding D.3.

Therefore, we can conclude that the scenarid_in [8] and the

scenario introduced in Sectign TV-B behaseactly the same.

D. Analysis of the stability bound

In [8] it has been shown that if > 1/(d — 1) a packet
delay can be made larger than any fixed but arbitrary delay
bound. This implies that any bound for stability must be Iowe
or equal tol/(d — 1), both in the wireline and the wireless
models. Let'’s refer to this bound as thptimistic bound.

Now, we define a paramete(d) measuring the difference
between such aoptimistic stability bound (i.e.,1/(d — 1))
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