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Bounds on Stability and Latency
in Wireless Communication

Vicent Cholvi and Dariusz R. Kowalski

Abstract— In this paper, we study stability and latency of
routing in wireless networks where it is assumed that no collision
will occur. Our approach is inspired by the adversarial queuing
theory, which is amended in order to model wireless commu-
nication. More precisely, there is an adversary that specifies
transmission rates of wireless links and injects data in such a
way that an average number of data injected in a single round
and routed through a single wireless link is at mostr, for a given
r ∈ (0, 1). We also assume that the additional “burst” of data
injected during any time interval and scheduled via a singlelink
is bounded by a given parameterb.

Under this scenario, we show that the nodes following so called
work-conserving scheduling policies, not necessarily the same, are
guaranteed stability (i.e., bounded queues) and reasonably small
data latency (i.e., bounded time on data delivery), for injection
rates r < 1/d, where d is the maximum length of a routing path.
Furthermore, we also show that such a bound is asymptotically
optimal on d.

I. I NTRODUCTION

In this paper, we consider a multihop wireless network
where data is transmitted from its source node to its destination
node through other intermediate nodes.

One crucial issue to characterize the performance of a net-
works is that ofstability. Roughly speaking, a communication
network system is said to be stable if data waiting to be
delivered (backlog) is finitely bounded at any single time.
The importance of such an issue is obvious, since if one
cannot guarantee stability, then one cannot hope for ensuring
deterministic guarantees for most of the network performance
metrics. One such metric islatency, defined as the maximum
time for delivering data from its source to its destination,taken
over all data occurring in the routing process.

Whereas in the last few years much of the analysis of worst-
case behavior of multihop wireline networks and scheduling
policies has been performed usingadversarialmodels, which
try to create as much trouble for the scheduling algorithm as
possible [1], [2], only a few papers have been focussed on
wireless networks. In [3], Borodin et al. considered a model
in which each node can transmit, at each time step, to all its
neighbors, and show that the Nearest-to-Go scheduling policy
is stable. They also showed that the Longest-in-System policy
is unstable. Andrews et al. [4], in a model in which a node can
transmit to only one neighbor at a time step, provided some
fully distributed scheduling algorithms that ensure network
stability, both when the routes are specified by the adversary
and when they are chosen by the nodes.

Contrary to the previous papers, which assumed that data
doesn’t suffer collisions when several nodes transmit at the
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same time, in [5] Chlebus et al. studied stability of some
distributed broadcast protocols. However, they assumed a
scenario in which the transmission range of each node reaches
all the other nodes. The maximum throughput, defined to
mean the maximum rate for which stability is achievable, was
studied by Chlebus et al. [6]. Anantharamu et al. [7] extended
this work by studying the impact of limiting the adversary by
assigning independent rates of injecting data to each node.

In this paper, we study stability in a scenario formed
by a multihop wireless network, where each node has a,
possibly different, work-conserving scheduling policy. We say
a scheduling policy iswork-conservingif it cannot be idle
as long as there is data queued to be transmitted. Many
well-known scheduling policies like FIFO (First-In-First-Out),
LIS (Longest-In-System), SIS (Shortest-In System), FTG
(Farthest-To-Go), NTS (Nearest-To-Source), etc., are work-
conserving policies, whereas other policies like Round-Robin,
GPS (Generalized Processor Sharing), WFQ (Weighted Fair
Queueing), etc., are non-work-conserving.

Our main result shows that a network with nodes following a
work-conserving scheduling policy is stable provided the data
injection rate is lower than1/d, beingd the largest number
of links that data can cross in the network. Furthermore, we
also show that such a bound is asymptotically optimal ond.

The rest of the paper is organized as follows. In Section II
we introduce our adversarial model and in Section III we
present the main results about stability and latency of wireless
communication in the specified model.

II. T HE MODEL

We use a modified version of the wireless adversarial model
proposed by Andrews et al. [4]. We consider a wireless
multihop undirected network ofn nodes, where each node acts
as both a transmitter and a receiver. When data is transmitted
from its source node to its destination node and they are too far
away from each other to communicate, data may go through
other nodes as intermediate hops. Each node contains a queue
for each outgoing link and uses it to store there data to be sent
along the corresponding link. We assume that data is fluid-
like (in the sense that the unit to transmit can be as small as
needed), and that several pieces of data may be transmitted
along one link in one time step. Furthermore, we assume that
data units don’t suffer collisions.1 This feature is similar to the
wireline adversarial model, that also doesn’t take into account
collisions between packets.

1This can be achieved by making a specific channel assignment based on
Time/Frequency/Code division or other methods for resolving contention in
the data-link layer.
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Time is divided into fixed slots. Each node can transmit at
different capacities in the interval[0, 1], which may or may
not vary over time as a result of changing wireless channel
conditions. We userij(t) to denote the rate at which nodei can
transmit to nodej at time slott, also referred astransmission
rate. It is assumed that the transmission rate is defined over all
pair of nodes, sincerij(t) can be set to zero if nodesi andj
are too far away from each other to communicate directly.
Furthermore, we assume that a node can transmit to only
one neighbor at each time step. This is the main feature that
distinguishes the wireless adversarial model from the wireline
one, in which a node is allowed to transmit to several nodes
at the same time step.

The time evolution is seen as a game between ascheduling
queue policywhich decides, at each time step, which data must
be transmitted (if any), and a boundedadversarythat governs
both thedata arrivals and thechannel conditions, i.e., the
transmission rates.

The adversary.Regarding the data arrivals, at each time step
the adversary injects a set of data into some of the nodes in
the network. More precisely, such an injection is defined by
a pair of parameters(b, r), whereb ≥ 1 is a natural number
and r satisfies0 ≤ r < 1. The parameterb (usually called
burstiness) models the short bursts of data the adversary can
inject into the network. The parameterr (called theinjection
rate) models the long-term rate at which data can be injected
into the network. The adversary is free to choose both the
source and the destination node for any injected data. It also
specifies the routing path from the source to the destination
that data must follow. Paths don’t include the same link more
than once, and data is absorbed after traversing its route.

The adversary also controls the quality of channels between
nodes, trying to create as much trouble for the scheduling
policy as possible, by means of specifying the transmission
rates. At each time slot and for each nodei, the adversary
sets up the values of the rate vector(ri1(t), ri2(t), ..., rin(t))
before nodei makes its scheduling decision. These rates are
not know to the scheduling algorithm.

In order for stability to be feasible, it is necessary to impose
some restrictions on the adversary so that it would not be
able to fully load any link a priori. More specifically, we
require that the adversary satisfies the followingadmissibility
condition. Let Iij(t) represent the total amount of data that
the adversary injects at timet and has linkij on its path. We
say that the adversarial injection isadmissible for rater and
burst b if there exist fractionsxij(t) ∈ [0, 1] such that

∑

j

xij(t) = 1, ∀i, ∀t (1)

∑

t∈Tx

Iij(t) ≤ r
∑

t∈Tx

rij(t)xij(t) + b, ∀ij, ∀Tx (2)

where Tx denotes a consecutive sequence ofx time steps.
One can viewxij(t) as representing fractional decisions that
indicate the assignment of data injected by the adversary
that wishes to pass through nodei at each time step. The

admissibility condition of Eq. 1 (combined with Eq. 2) says
that the total size of such a data is, on average, at mostr.

Stability. In order to formally define stability, we denote
by dp the number of links that a data unitp has to cross.
Furthermore, we denote byapi andfp

i the time instants thatp
respectively arrives at and departs from theith node on its
routing path, where1 ≤ i ≤ dp. If p leaves itsith link in
time stepfp

i , it will arrive at its (i + 1)st queue at time step
api+1 = fp

i . Finally, we denote byQp
i the timep spends in

the queue of theith node on its path, i.e.,Qp
i = fp

i − api . Let
Q = maxp,1≤i≤dp

Qp
i .

Given an adversaryA (as defined above) and a scheduling
protocolP , we say a networkG is stableif Q ≤ ∞ [4].

III. STABILITY CONDITIONS AND LATENCY OF ROUTING

WITH WORK-CONSERVING SCHEDULING POLICIES

In this section, we obtain a formula for the threshold
value on data injection rate guaranteeing stability in wireless
networks with work-conserving scheduling policies (i.e.,nodes
cannot be idle as long as there data queued to be transmitted).
Furthermore, we also estimate data latency for injection rates
below this threshold value.

We remark that each node may have its own, possibly
different, scheduling policy (FIFO, LIFO, Longest-in-System,
etc.), as long as they are work-conserving. Furthermore, the
scheduling policies don’t need to know the quality of the
transmission channels (i.e., the values of the rate vectors),
since they only take care of deciding the order in which data
is transmitted.

The following theorem provides a bound on the injec-
tion rate that guarantees network stability under any work-
conserving scheduling policies.

Theorem 1:Any network in which all queues use a, possi-
bly different, work-conserving scheduling policy and dataare
injected by a(b, r)-adversary, is stable forr < 1

d
, whered is

the largest number of hops that any data unit traverses in the
network. Furthermore, data latency is bounded from above by
d b∆
1−rd

, where∆ denotes the maximum number of neighbors
a node can have.

Proof: The proof has two parts. First, we show that if
r < 1

d
then the maximum time interval data takes to cross any

link is bounded, which implies stability. Second, we prove that
data latency is also upper bounded byd b∆

1−rd
, provided the first

condition on stabilityr < 1
d

holds.
In what follows, we denote asN(i) the set of nodes that

are neighbors of nodei. We also note thatd = maxp{dp}.
Remark 1:Note that we don’t assume, a priori, whether the

scenario formed by the network, the scheduling policy, and the
adversary, is stable or not. Thus, if it is unstable, the timep
takes to leave itsith queue could be infinite (i.e.,fp

i = ∞).
Remark 2:Note that iffp

i = ∞ (for somep) thenQ = ∞.
However, we base our proof of finding under which conditions,
Q < ∞ (which will automatically implyfp

i < ∞).
Part (1): Letp be a data unit that attains the maximumQ

(i.e., Qp
i = Q) at the ith node on its path. We will call the

queue in this node theith queue of datap.
Let tB be the oldest time step such that (1)tB < api , and (2)

in every step in(tB, a
p
i ] the ith queue is non-empty. Hence,
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we have that during the interval(tB , f
p
i ] the ith queue is non-

empty.
Defineφp

i as the set formed by all data units served by the
ith queue during the interval(tB , f

p
i ], and letp∗ be the oldest

data unit inφp
i (i.e., ∀p′ ∈ φp

i (ap
′

1 ≥ ap
∗

1 )). Hence, by the
definition ofp∗, all data inφp

i must have been injected during
the interval[ap

∗

1 , fp
i ].

Based on the above mentioned scenario and on the definition
of the adversarial model,Qp

i = fp
i − api is bounded by the

maximum number of data units injected during the interval
[ap

∗

1 , fp
i − 1] (i.e., the worst-case scenario is: where all data

injected since the time instantap
∗

1 until p is served, cross the
ith node ofp and is scheduled beforep) minus the data served
by the ith queue ofp during the interval[tB, a

p
i ]. Recall that

in each step in the period[tB, a
p
i ] the ith queue ofp is non-

empty. We have

fp
i − api

≤
∑

j∈N(i)

(

r

f
p

i
−1

∑

t=a
p∗

1

rij(t)xij(t) + b
)

−
∑

j∈N(i)

a
p

i
∑

t=tB

rij(t)xij(t)

=
∑

j∈N(i)

(

r

tB−1
∑

t=a
p∗

1

rij(t)xij(t) + r

a
p

i
∑

t=tB

rij(t)xij(t) +

r

f
p

i
−1

∑

t=a
p

i +1

rij(t)xij(t) + b −

a
p

i
∑

t=tB

rij(t)xij(t)
)

Now, taking into account thatr ≤ 1, we have

fp
i − api

≤
∑

j∈N(i)

(

r

tB−1
∑

t=a
p∗

1

rij(t)xij(t) + r

f
p

i
−1

∑

t=a
p

i
+1

rij(t)xij(t) + b
)

and taking also into account thatrij ≤ 1, we finally obtain

fp
i − api ≤

∑

j∈N(i)

(

r

tB−1
∑

t=a
p∗

1

xij(t) + r

f
p

i
−1

∑

t=a
p

i
+1

xij(t) + b
)

Let k be the hop number ofp∗ when it arrives to the
node wherep attains the maximumQ. Taking into ac-
count the first admissibility condition (Eq. (1)) we have that
∑

j∈N(i) xij(t) = 1 for all t, wherexij(t) ∈ [0, 1]. Therefore,

fp
i − api

≤ r(tB − ap
∗

1 ) + r(fp
i − api − 1) + |N(i)| · b

= r(tB − ap
∗

k + ap
∗

k − ap
∗

1 ) + r(fp
i − api − 1) + |N(i)| · b

= r(tB − ap
∗

k ) + r(ap
∗

k − ap
∗

1 ) + r(fp
i − api − 1) +

|N(i)| · b

Sinceap
∗

k ≥ tB, then we have

fp
i − api ≤ r(ap

∗

k − ap
∗

1 ) + r(fp
i − api − 1) + |N(i)| · b

Sincefp
i − api = Qp

i = Q andap
∗

k − ap
∗

1 ≤ (d − 1)Q, and
taken into account thatQ is the maximum time a data unit
takes to cross a link, andd − 1 is the maximum number of

links a data unit crosses until reaching its last queue, we have
that

Q ≤ rQ(d− 1) + r(Q − 1) + |N(i)| · b

Q ≤ rQd− r + |N(i)| · b

It follows thatQ < ∞ for r < 1/d.
Part (2): Consider a data unitp that traverses a path

with dp hops, wheredp ≤ d. This network satisfies the
property delivered in Part (1). Callδp the latency ofp and
let ∆ = maxi |N(i)|. From the above derivation we see that
δp ≤ dpQ ≤ d b∆−r

1−rd
≤ d b∆

1−rd
.

IV. T IGHTNESS OF THE BOUNDS.

In [8], Bennet et al. introduce a family of networks intended
to provide stability bounds in thewireline model(we refer
to the “standard” adversarial queueing model [1] for wireline
networks).

We denote asscenario the combination of a concrete
network and a concrete adversarial strategy.

A. Description of the scenario in [8]

The structure of the family of networks used in [8] is
illustrated in Figure 1 (here, we present a slightly modified
description of an equivalent network).

a) Network topology:: The network is formed by a
collection of identical building blocks, arranged in a tree
structure of depthJ . At each building block there areh − 1
nodes (whereh ≥ 3 represents the maximum number of hops a
packet can traverse), each node having onlyonequeue. Within
each building block each node haskh external inputs (i.e.,
coming from nodes located in some other building blocks in
the lower level) and one internal input (i.e., coming from the
preceding node of the same building blocks), except for the
first one that has no internal input.

Furthermore, each node has one internal output that is
connected to the subsequent node’s internal input, except for
the last one which forms the building block output which is
connected to the external input of some node in a building
block of higher level.

b) Traffic description:: Every building block has one
internal source of traffic calledtransit traffic which, after
traversing one internal node, feeds the next internal node,
except for the last one which feeds the building block output.
Also, each internal node is fed withkh external sources of
traffic calledbuilding block inputswhich, after traversing that
internal node, is absorbed at the subsequent node or at the first
node of some other building block in the upper level2.

2At this point, we note that in [8] the authors say thattraffic from the
building block input dies in a data sink. However, it is equivalent to say that
they are absorbed after traversing one internal node (i.e.,they are absorbed at
the subsequent node or at the first node of some other buildingblock in the
upper level).
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transit
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building
blocks
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traffic

building
blocks
traffic

(a) Structure of a single building block.

level J

level J-1

level J-2

(b) The network made of building blocks. For clarity, some links corresponding to the non-colored
building blocks have been omitted.

Fig. 1

NETWORK USED IN [8].
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B. Simulating the scenario in [8] in the wireless case

In this section, we show how to simulate the scenario in [8]
in the wireless model:

S.1 Each node uses a FIFO scheduling policy.
S.2 We use the same network topology as in [8]. That
is, we use the same nodes and assume two nodes
can exchange packets directly if they are connected
in [8].
S.3 The adversary in the wireless scenario sets up
permanently the transmission rates to1 for the nodes
that can exchange packets (as explained in S.2) and0
for the remaining nodes.
S.4 The adversarial strategy of injecting packets and
choosing their paths is exactly the same as in [8].

In view of the network and traffic specification in Sec-
tion IV-A and by simulation assumptions S.2 and S.4, the
following property holds:

Fact 1: Both in the scenario in [8] and the above
described wireless scenario, each node feeds to only
one node in the whole network.

C. Summary of differences between the wireline scenario
of [8] and the wireless model as described in Section IV-B

What distinguishes the collision-free wireless model from
the wireline model of [8] is that, in the wireless model:

D.1 A node feeds to only one neighbor at each time
step.
D.2 The adversary can dynamically set up the trans-
mission rates for the links.
D.3 The admissibility conditions are different (due
to differences D.1 and D.2).

Let us analyze these differences in the contexts of the
wireline scenario described in [8] and its simulation in the
wireless model as described in Section IV-B:

• From Fact 1 we have that, in both scenarios, a node feeds
to only one node in the whole network. So, there is no
difference in both scenarios regarding D.1.

• Taking into account S.3, both scenarios are the same
regarding D.2.

• Since the general differences D.1 and D.2 do not hold in
the considered wireline and wireless scenarios, the admis-
sibility conditions (1) and (2) in the wireless scenario are
equivalent to the admissibility condition in the wireline
scenario. Then, there is no difference in both scenarios
regarding D.3.

Therefore, we can conclude that the scenario in [8] and the
scenario introduced in Section IV-B behaveexactly the same.

D. Analysis of the stability bound

In [8] it has been shown that ifr > 1/(d − 1) a packet
delay can be made larger than any fixed but arbitrary delay
bound. This implies that any bound for stability must be lower
or equal to1/(d − 1), both in the wireline and the wireless
models. Let’s refer to this bound as theoptimisticbound.

Now, we define a parameterǫ(d) measuring the difference
between such anoptimistic stability bound (i.e.,1/(d − 1))

and the bound provided in Theorem 1 (i.e.,1/d) when we
increased. We have that it behaves likeǫ(d) ∼ 1

d−1 − 1
d
∼

1
d2 . Therefore, we have that our bound in Theorem 1 is
asymptotically optimal within that limit.

V. FUTURE WORK

As a future work, we note that an interesting open question
is to analyze the behavior of the system when the channel
conditions are not fully controlled by the adversary but they
fulfill some specific constrains.
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[2] J. Echagüe, V. Cholvi, and A. Fernández, “Universal stability results for
low rate adversaries in packet switched networks,”IEEE Communication
Letters, vol. 7, no. 12, pp. 578–580, December 2003.

[3] A. Borodin, R. Ostrovsky, and Y. Rabani, “Stability preserving trans-
formations: Packet routing networks with edge capacities and speeds,”
Journal of Interconnection Networks, vol. 5, no. 1, pp. 1–12, 2004.

[4] M. Andrews and L. Zhang, “Routing and scheduling in multihop wireless
networks with time-varying channels,”ACM Transactions on Algorithms,
vol. 3, no. 3, 2007.

[5] B. S. Chlebus, D. R. Kowalski, and M. A. Rokicki, “Adversarial queuing
on the multiple-access channel,” inPODC ’06: Proceedings of the twenty-
fifth annual ACM symposium on Principles of distributed computing.
New York, NY, USA: ACM, 2006, pp. 92–101.

[6] ——, “Maximum throughput of multiple access channels in adversarial
environments,”Distributed Computing, vol. 22, no. 2, pp. 93–116, 2009.

[7] L. Anantharamu, B. S. Chlebus, and M. A. Rokicki, “Adversarial multiple
access channel with individual injection rates,” inOPODIS, 2009, pp.
174–188.

[8] J. C. R. Bennett, K. Benson, A. Charny, W. F. Courtney, andJ.-Y. L.
Boudec, “Delay jitter bounds and packet scale rate guarantee expedited
forwarding,” IEEE/ACM Trans. Netw., vol. 10, no. 4, pp. 529–540, 2002.


	I Introduction
	II The model
	III Stability Conditions and Latency of Routing with Work-Conserving Scheduling Policies
	IV Tightness of the bounds.
	IV-A Description of the scenario in DBLP:journals/ton/BennettBCCB02
	IV-B Simulating the scenario in DBLP:journals/ton/BennettBCCB02 in the wireless case
	IV-C Summary of differences between the wireline scenario of DBLP:journals/ton/BennettBCCB02 and the wireless model as described in Section IV-B
	IV-D Analysis of the stability bound

	V Future work
	References

