
Tree-Structured Expectation Propagation for
Decoding Finite-Length LDPC Codes

Pablo M. Olmos, Juan José Murillo-Fuentes, and Fernando Pérez-Cruz

Abstract—In this paper, we propose Tree-structured Expecta-
tion Propagation (TEP) algorithm to decode finite-length Low-
Density Parity-Check (LDPC) codes. The TEP decoder is able
to continue decoding once the standard Belief Propagation (BP)
decoder fails, presenting the same computational complexity as
the BP decoder. The BP algorithm is dominated by the presence
of stopping sets (SSs) in the code graph. We show that the TEP
decoder, without previous knowledge of the graph, naturally
avoids some fairly common SSs. This results in a significant
improvement in the system performance.

Index Terms—Tree-structured expectation propagation, LDPC
decoding, finite-length analysis.

I. INTRODUCTION

TREE-structured expectation propagation (TEP) [1] has
been proposed by Olmos et al. in [2] as a decoding

algorithm for low-density parity-check (LDPC) codes over
discrete memoryless channels (DMCs). The TEP improves the
performance of the belief propagation (BP) algorithm thanks
to a better estimation of the posterior probability for each
bit in the codeword. In [2], the authors focus on the TEP
limiting performance over the binary erasure channel (BEC).
It is shown that the TEP asymptotically decodes up to a higher
fraction of errors than the BP for regular and irregular LDPC
codes. In addition, for the BEC, the TEP complexity equals
the BP, unlike other proposals to improve the BP estimate such
as the generalized-BP (GBP) [3] .

For infinite-length codes, the analysis of the decoding
performance of the BP and the TEP is based on the absence
of cycles in the graph along the decoder iterations [4], [2].
This assumption does not hold for finite-length codes, where
some patterns of errors yield a set of cycles that prevent the
variables involved to be decoded. These structures of cycles,
where the BP cannot find an unique solution, are known as
stopping sets (SSs). For practical short-length LDPC codes
the SSs limit the performance of the decoders. In this paper,
we analyze the decoding capabilities of the TEP compared to
the BP for finite-length codes over the BEC. We show that
some SSs of the BP are broken by the TEP decoder, thus
improving appreciably the decoding process. The experimental

Manuscript received October 22, 2010. The associate editor coordinating
the review of this letter and approving it for publication was S. Yousefi.

This work was partially funded by the Spanish government (Ministerio
de Educación y Ciencia 2009-14504-C02-01,02, Consolider-Ingenio 2010
CSD2008-00010), Universidad Carlos III (CCG10-UC3M/TIC-5304) and the
European Union (FEDER).

P. M. Olmos and J. J. Murillo-Fuentes are with the Dept. Teorı́a de la
Señal y Comunicaciones, Escuela Técnica Superior de Ingenierı́a, Universidad
de Sevilla, Paseo de los Descubrimientos s/n, 41092 Sevilla, Spain (e-mail:
{olmos, murillo}@us.es).

F. Pérez-Cruz is with the Dept. Teorı́a de la Señal y Comunicaciones,
Universidad Carlos III de Madrid, Spain (e-mail: fernando@tsc.uc3m.es).

Digital Object Identifier 10.1109/LCOMM.2011.03.102015

results for regular and irregular LDPC codes show that the
TEP decoder significantly outperforms the BP decoder in the
waterfall region [5], where the BP performance is dominated
by large SSs.

II. BP AND TEP FOR THE BEC

The BP algorithm [6] is the basic tool for LDPC decoding.
Although it was originally proposed as a message passing
algorithm, for the BEC it exhibits an alternative and simpler
formulation, in which the non-erased variable nodes are re-
moved from the graph after each iteration. The BP, under this
interpretation, is referred to as the peeling decoder [7]. We
briefly introduce the peeling decoder since the TEP decoder
for the BEC is an extension of it. Both algorithms are easily
described using the Tanner graph of the LDPC code [4]. The
graph has 𝑛 variable nodes 𝑉1, . . . , 𝑉𝑛 and 𝑛(1 − 𝑟) check
nodes 𝑃1, . . . , 𝑃𝑛(1−𝑟), where 𝑟 is the rate of the code. The
degree of a variable or check node is defined as the number
of edges connected to it.

A. Peeling decoder

The decoder is initialized by removing from the graph all
the variable nodes corresponding to non-erased bits. We also
remove all the connections from these variable nodes. After
removing a variable node whose value was one, we change
the parity of the check node(s) it was connected to. The BP
algorithm proceeds by removing a check node and a variable
node in each iteration:

1) It looks for any check node linked to a single variable
node, i.e., a check node of degree one. The BP decoder
copies the parity of this check node into the variable node
and removes the check node.

2) Second, it removes the variable node that we have just
de-erased. If the variable was a one, it changes the parity
of the check node(s) it was connected to.

3) It repeats Steps 1) and 2) until all the variable nodes have
been removed, successfully finishing the decoding of the
received word, or until there are no degree-one check
nodes left, yielding an unsuccessful decoding.

B. TEP decoder for BEC

The TEP decoder works over the LDPC graph using not
only the check nodes of degree one but also the degree-
two check nodes. A check node of degree two tells us that
the variable nodes connected to it are either equal, if the
check has parity zero, or opposite, otherwise. The decoder
is initialized like the peeling decoder, removing all the bits

⃝



2

V1

V2

P1

P2

P3

P2

P3

V1

(a) (b)

Fig. 1. In (a) we show two variable nodes, 𝑉1 and 𝑉2, that share a check
node of degree two. In (b), 𝑉1 heirs the connections of 𝑉2 (solid lines) and
𝑃1 and 𝑉2 are removed.

that have not been erased by the channel. In each iteration,
the TEP performs as follows:

1) It looks for a check node of degree one or two.
2) If a check of degree one is found, the TEP recovers the

associated variable, performing the steps 1) and 2) of the
peeling decoder in Section II-A.

3) If a check of degree two is found, the decoder removes
the check node of degree two from the graph together
with one of the variable nodes connected to it and the
two associated edges. Then it reconnects to the remaining
variable node all the check nodes that were connected
to the removed variable node. The parities of the check
nodes re-connected to the remaining variable node have
to be reversed if the removed check node had parity one.

4) Steps 1)-3) are repeated until all the variable nodes have
been removed or the graph runs out of check nodes of
degree one or two.

The step 3) is sketched in Fig. 1. The variable 𝑉1 heirs the
connections of 𝑉2 (solid lines) in Fig. 1(b) and the check 𝑃1

and the variable 𝑉2 are removed. 𝑉2 is recovered once 𝑉1 is
de-erased. Finally, if 𝑃1 is parity one, the parities of 𝑃2 and
𝑃3 are reversed.

The TEP removes a check and a variable node per iteration,
as the BP does. Hence, we are able to improve the decoding
performance without increasing the complexity. When a check
node of degree two is removed, the value of the removed vari-
able node remains unknown. This variable becomes known,
when the remaining variable node in the graph has been
decoded. In [2], it is also proved that the TEP solution does
not depend on the order in which check nodes of degree one
or two are removed.

C. Stopping sets for the TEP decoder

The decoding performance for finite length codes, as dis-
cussed in the introduction, is dominated by the presence of SSs
[4], [5]. In Fig. 2(a) and (b), we include an example that shows
why the TEP decoder is able to improve the BP performance
for finite-length codes. In Fig. 2(a), the subgraph in thick
solid lines with variable nodes 𝑉2, 𝑉4 and 𝑉6 constitutes a SS
for the BP decoder. If the three variables are erased, the BP
decoder cannot recover them. Nevertheless, the TEP decoder
can decode this subgraph: the check node 𝑃2 is degree two
and is eliminated along with 𝑉6 following the step 3) of the
TEP in Section II-B. Variable 𝑉4 heirs the connections of 𝑉6

and, hence, it gets doubly connected to 𝑃6. In practice, these

V1

V2

P1

P2

P3

P4

P5

V3

V4

V5

V6

P6

V1

V2

P1

P2

P3

P4

P5

V3

V4

V5

P6

(a) (b)

Fig. 2. In (a), the variables 𝑉2, 𝑉4 and 𝑉6 form one SS (thick solid line).
In (b), we show the graph once the TEP has removed 𝑃2 and 𝑉6.

0.34 0.36 0.38 0.4 0.42 0.44 0.46
10

−4

10
−3

10
−2

10
−1

10
0

Channel erasure probability

W
or

d 
er

ro
r r

at
e

Fig. 3. TEP (solid line) and BP (dashed line) decoding performance for
a regular LDPC (3,6) code with code lengths 𝑛 = 28 (∘), 𝑛 = 29 (□),
𝑛 = 210 (×) and 211 (⊳).

two edges can be removed. In Fig. 2(b), we plot the graph
after this process. We can see that 𝑃6 becomes degree one,
which makes 𝑉2 recoverable.

We have demonstrated the existence of a SS that the TEP
successfully decodes. Any SS is decodable by the TEP if Step
3) of the TEP decoder breaks its cycles and reveals some of
their variables.

III. EXPERIMENTAL RESULTS

We first consider a rate 1/2 regular (3, 6) LDPC code. In
Fig. 3, we plot the word error rate (WER) obtained with the
TEP (solid lines) and the BP (dashed lines) decoders with code
lengths 𝑛 = 28 (∘), 𝑛 = 29 (□), 𝑛 = 210 (×) and 211 (⊳).
We have averaged the results between 100 codes samples and
105 codewords for each sample. Note that the TEP improves
the BP decoder in all cases but the gain is more significant
for short codes.



OLMOS et al.: TREE-STRUCTURED EXPECTATION PROPAGATION FOR DECODING FINITE-LENGTH LDPC CODES 3

0.34 0.36 0.38 0.4 0.42 0.44 0.46
10

−2

10
−1

10
0

Channel erasure probability

W
or

d 
er

ro
r r

at
e

Fig. 4. TEP (solid line) and BP (dashed line) decoding performance for the
irregular LDPC code defined by (1) with code lengths 𝑛 = 28 (∘), 𝑛 = 29

(□), 𝑛 = 210 (×) and 211 (⊳).

0.34 0.36 0.38 0.4 0.42 0.44 0.46
10

−4

10
−3

10
−2

10
−1

10
0

Channel erasure probability

W
or

d 
er

ro
r r

at
e

Fig. 5. TEP (solid line) and BP (dashed line) decoding performance for the
irregular LDPC code defined by (1) with code length/expurgation parameters
of 𝑛/𝑠𝜖 = 28/10 (∘), 𝑛/𝑠𝜖 = 29/20 (□), 𝑛/𝑠𝜖 = 210/40 (×) and
𝑛/𝑠𝜖 = 211/80 (⊳).

Capacity achieving LDPC codes for the BP are defined
by irregular distributions. These codes have higher limiting
thresholds, but their performance for finite-lengh codes can be
poor, specially in the error floor region [5]. On the contrary,
for the regular (3, 6) code in the former example, we can
easily find samples with no error floor. We have worked with
a rate 1/2 irregular code defined by the next node degree
distributions [4]:

𝐿(𝑥) = 0.6253𝑥2 + 0.1663𝑥3 + 0.0752𝑥4 + 0.0421𝑥5

+ 0.0266𝑥6 + 0.018𝑥7 + 0.0132𝑥8 + 0.01𝑥9.

+ 0.0078𝑥10 + 0.0063𝑥11 + 0.0050𝑥12 + 0.0042𝑥13,

𝑅(𝑥) = 𝑥6. (1)

In Fig. 4 we plot the results for code lengths of 𝑛 = 28

(∘), 𝑛 = 29 (□), 𝑛 = 210 (×) and 211 (⊳). Each curve
has been averaged with 20 code samples and 105 codewords.

In the waterfall region, where the error probability falls off
sharply, the TEP decoder (solid curves) improves the BP error
probability (dashed lines) in all cases, but specially for short
codes. It is known that the performance in the waterfall region
is determined by large SSs [4]. At the light of the results in
Fig. 3 and Fig. 4, the TEP decoder is clearly more efficient
than the BP to avoid these kinds of SSs.

In Fig.4, we can appreciate that both the TEP and BP
present similar error floor, characterized by an slow decrease
of the error probability with 𝜖. Hence, the low weight SSs
similarly degrade the TEP and BP decoders performance. In
practice, the error floor region can be greatly reduced by
modifying the LDPC code, see [8], [5] for example. Using
these techniques, we are able to expurgate all the short cycles
in the LDPC code and, therefore, avoid short SSs and decoding
failures with weight below an expurgation parameter 𝑠𝜖 [4].
In Fig. 5, we illustrate the effect of the expurgation in the
irregular code in (1). We plot the TEP and BP curves for the
expurgated code with code length/expurgation parameters of
𝑛/𝑠𝜖 = 28/10 (∘), 𝑛/𝑠𝜖 = 29/20 (□), 𝑛/𝑠𝜖 = 210/40 (×)
and 𝑛/𝑠𝜖 = 211/80 (⊳). We can better observe now the TEP
gain in the whole range of the erasure probability. The TEP
decoder then provides a significant coding gain, not only for
regular LDPC codes, but also for capacity achieving irregular
LDPC codes.

IV. CONCLUSIONS

In this paper we analyze the performance of the TEP
decoder for practical finite-length regular and irregular LDPC
codes. We describe the TEP for the BEC to show that the
new additional step introduced to the peeling decoder allows
the successful decoding of a SS with the same computational
complexity. In the numerical experiments included, the TEP
exhibits a remarkable improvement in the waterfall region.
These results are of major interest, as a first step in the design
of good finite-length codes for the TEP to exploit the gain
introduced.

REFERENCES

[1] T. Minka and Y. Qi, “Tree-structured approximations by expectation
propagation,” in Proc. Neural Information Processing Systems Conference
(NIPS), 2003.

[2] P. M. Olmos, J. J. Murillo-Fuentes, and F. Pérez-Cruz, “Markov chain
expectation propagation for decoding in erasure channels,” IEEE Trans.
Inf. Theory, submitted.

[3] J. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy approx-
imations and generalized belief propagation algorithms,” IEEE Trans. Inf.
Theory, vol. 51, no. 7, pp. 2282–2312, July 2005.

[4] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2008.

[5] C. Di, D. Proietti, T. Richardson, E. Telatar, and R. Urbanke, “Finite
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579, June
2002.

[6] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of
low density parity check codes,” IEE Electron. Lett., vol. 32, no. 18, pp.
1645–1646, 1996.

[7] T. Richardson and R. Urbanke, “The capacity of low-density parity check
codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 599–618, Feb. 2001.

[8] X. Zheng, F. C. M. Lau, and C. K. Tse, “Constructing short-length
irregular LDPC codes with low error floor,” IEEE Trans. Commun.,
vol. 58, no. 10, pp. 2823–2834, Oct. 2010.




