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Abstract

A queueing model for Multi-rate Multi-user MIMO systems is pre-
sented. The model is built upon the assumption that the probabil-
ity distribution of available destinations among the buffered frames at
the Base Station (BS) is approximately the same as the probability
distribution of the traffic arriving to the BS, this is, the amount of
traffic directed to each MN with respect to the total traffic load. This
assumption leads to a simple, but accurate, queueing model for Multi-
user MIMO systems that accounts for the impact of a finite number of
active MNs in non-saturated conditions. The model is easily applicable
to any Multi-user MIMO scenario given that the probability density
function of the post-processing SINR (Signal to Interference and Noise
Ratio) for each MN is known.
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Figure 1: Specific scenario with M = 2 antennas serving frames to N MNs

1 Introduction

In a Multi-user MIMO system, a BS equipped with M antennas is able to
transmit simultaneously up to M frames to M different single-antenna MNs,
achieving a maximum spatial multiplexing gain of M [1]. However, this is
only possible if two conditions are satisfied: i) the BS has at least M frames
stored in its transmission queue and ii) these stored frames are destined to
at least M different MNs. On the contrary, the number of stored frames or
the available destinations among them will limit the maximum number of
frames that can be transmitted in parallel. Therefore, the queueing process
(how the number of queued frames evolves with the time, which depends on
both the arrival and service processes) has to be considered in detail to really
understand the performance that Multi-user MIMO systems can provide.

In this letter, a queueing model for Multi-rate Multi-user MIMO sys-
tems in non-saturated conditions and with a finite number of active MNs
is presented. From the physical layer, the model relies on the knowledge of
the post-processing SINR distribution [2] at each MN, independently of the
precoding technique is used at the BS.

2 System Model and Assumptions

A BS with M antennas and a finite-buffer of size K frames are considered
(Figure 1). Frames of length equal to L bits (constant) directed to the
N single-antenna MNs arrive to the BS following a Poisson process with
aggregate rate λ, equally distributed among all active destinations.

A general precoding scheme is used at the BS, fed with the Channel
State Information (CSI) acquired at each MN and sent to the BS through
an ideal and instantaneous feedback channel. Based on those CSI values,
a transmission rate, picked from a finite set of rates R, is used for the
communication between the BS and the MNs in a frame-by-frame basis.
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A FIFO-based scheduling (frame selection) algorithm is considered. It
selects ς ∈ [1,min(q,M)] frames from those q ∈ [1,K] frames stored in the
queue when a new transmission is scheduled, which happens just after the
previous one has finished or, if the queue has become empty, immediately
after the arrival of a new frame. Specifically, the BS always schedules the
first frame waiting for transmission and then, it selects sequentially up to
min(q,M)− 1 frames, directed to not yet selected destinations. The group
of selected frames at each transmission is called a space-batch.

In Figure 2, a specific example of the queue behavior is shown for M = 2
antennas, K = 3 frames and R = {r1, r2} rates. Observe that the (i + 1)-
th space-batch comprises two frames, one transmitted at r1 and one at r2
respectively, resulting in a space-batch duration of L/r1 seconds as r1 is
the minimum transmission rate in the (i + 1)-th space-batch. In general,
let r = min{r1, . . . , rς} be the lowest transmission rate assigned to one
of the frames included in a certain space-batch and p(r, ς) its associated
probability. The dependence with ς in p(r, ς) is included to account for the
impact that the number of spatially multiplexed streams can have on the
assigned transmission rates.
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Figure 2: Temporal evolution of the BS’s queue. The q values are the queue
state (number of frames in the queue) just after a frame arrival or a space-
batch departure. Observe that r2 > r1.

3 The Queueing Model

AM/G[1,M ]/1/K batch-service queue [3] is used to model the BS (for further
information, refer to [4] and references therein). The goal of the presented
model is to analytically obtain the system delay (average time that a frame
remains in the BS) and the blocking probability (probability that a new
arriving frame can not be stored in the queue as there is no free space in
it) for the considered Multi-user MIMO system. Two steps are followed to
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solve the presented model: i) the departure distribution, πd, is computed by
using the discrete-time embedded Markov chain method and ii) the PASTA
(Poisson Arrivals See Time Averages) property of the Poisson arrivals is ap-
plied to find the probability distribution at arbitrary times, πs, as a function
of πd.

3.1 Distribution of eligible frames in the queue (DEFQ)

As the traffic load is uniformly distributed among all destinations, the prob-
ability that an arriving frame is destined to a target MN is 1/N . Therefore,
to compute the probability of selecting ς ∈ [1,min(q,M)] frames from those
q frames stored in the queue, it is assumed that, given a randomly chosen
frame from the BS queue, it is destined to a target MN with probability
1/N too, that is, the same as its arrival probability.

Let Aq,ς,N be the event that computes, when q frames are stored in the
queue, the possible choices of ς frames directed to different destinations,
among a set of N possible destinations. The probability of the event Aq,ς,N

can be computed as the quotient of favorable and total events. The number
of total events is N q, that is, the total number of different combinations
of q elements if each element can take N different values. To compute the
number of favorable events, we should consider, given the presence of q
frames, those ς of them directed to different destinations. To do so, we first
fix the ς destinations, that is,

(
N
ς

)
. Then, for each one of these destinations,

all possible ordered partitions of ς different elements in a queue with q frames
have to be considered. That is

∑
(µ1,...,µς)∈Ψq,ς

PRq
µ1,...,µς , where Ψq,ς is the

set defined as Ψq,ς = {(µ1, . . . , µς) ∈ Zς
+ |µ1 + . . . + µς = q} and PRq

µ1,...,µς

denotes the permutation with repetition of q elements in sets of µ1, . . . , µς

elements. Thus, it derives in the following analytic formula:

p(Aq,ς,N ) =

(
N
ς

)
Nq

·
∑

(µ1,...,µς)∈Ψq,ς

PRq
µ1,...,µς

(1)

3.2 Distribution at departure epochs

The probability distribution at departure epochs, πd, is computed solving
the linear system πd = πdP, together with the normalization condition
πd1T = 1. P is the probability transition matrix, where each i, j ∈ [0,K]
position, represents the probability pi,j to move from any state i, with i the
number of frames in the queue at the moment that a new space-batch is
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scheduled, to any state j, with j the number of frames in the queue just
after the space-batch departure. Each pi,j is computed averaging all the
different space-batch sizes and transmission rates that make that transition
possible, that is

pi,j =

max(1,min(i,M))∑
ς=1

p•(Ai,ς,N )
∑
∀r∈R

p(r, ς)pi,j(r, ς) (2)

where p•(Ai,ς,N ) is computed from

p•(Ai,ς,N ) =

{
p(A1,ς,N ), i = 0
p(Ai,ς,N ), i ≥ 1

(3)

as it takes into account the specific case in which the system is empty, p(r, ς)
is the probability that a space-batch involving ς frames is transmitted at rate
r, as defined in Section 2, and pi,j(r, ς) is the transition probability from any
state i to any state j given that a space-batch of ς frames is transmitted at
rate r.

From any state i ≥ 1 to any state j ∈ [i − ς,K − ς − 1], pi,j(r, ς) is
computed taking into account the probability of v = (j−i)+ς arrivals during

the service time of the on-going space-batch, this is pi,j(r, ς) =
(λL

r
)v

v! e−λL
r

where L/r is the space-batch service time and λ is the Poisson aggregate
arrival rate. The transition probability from any state i ≥ 1 to the last
possible state in which the queue can depart, j = K − ς, is computed as the
complementary probability of not moving to any of the other states, this is
pi,K−ς(r, ς) = 1 −

∑K−ς−1
j=i−ς pi,j(r, ς). Finally, from the queue empty state,

i = 0, to any state j, the transition probability p0,j(r, ς) is given by the same
probability of departing in state q = 1, p0,j(r, ς) = p1,j(r, ς), as the system
remains inactive while the queue is empty.

3.3 Distribution at arbitrary times

The distribution at arbitrary times, πs, is obtained using the PASTA prop-
erty, which states that the probability to be at state u at any arbitrary time
is equal to the probability that a new arrival finds the queue at this state.
Note that this is equivalent to say that the system has been in the u-th state
for 1/λ seconds on average in a given interdeparture epoch (Figure 2).

Additionally, from Figure 2, it can be observed also that the queue
evolves between two macro-states, the non-transmitting and transmitting
states, with average duration E[Tt] and E[Tnt] respectively. The steady-state
probability that a new arrival finds the queue in one of these two macro-
states depends on the proportion of time that the system is in each one, that
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is φt = E[Tt]
E[Tnt]+E[Tt]

for the transmitting macro-state and φnt = 1 − φt for

the non-transmitting one. E[Tt] depends on the transmission rate at which
a space-batch of size ς frames is transmitted. Then, averaging over all

possible cases, E[Tt] =
∑K−1

i=0 πd
i

∑max(1,min(i,M))
ς=1 p•(Ai,ς,N )

∑
∀r∈R p(r, ς)Lr .

E[Tnt] is computed taking into account that the time between two packet
arrivals is in average 1/λ and the system is in the non-transmitting state
only if previous departure has finished in the empty state (otherwise the non-
transmitting macro-state has a duration equal to zero). Then, E[Tnt] =

1
λπ

d
0 .

The probability that the system is in u-th state, u ∈ [1,K − 1], at
any arbitrary time is shown in Equation 4. Note that, given a space-batch
starting at the i-th state, the transition probabilities that guarantee that an
arrival has observed the queue at the u-th state before the system departs at
state j, depend on the size of the space-batch, the transmission rate r, and
the relative position of the u-th state with respect to the i-th state. This is,

πs
u = φt

1

E[Tt]

1

λ

u∑
i=0

πd
i

max(1,min(i,M))∑
ς=1

p•(Ai,ς,N )
∑
∀r∈R

p(r, ς)
K−ς∑

j=u+1−ς

pi,j(r, ς)


(4)

The probability to be in the empty state at any arbitrary time is the
probability that a new arrival finds the system in the non-transmitting state,
this is πs

0 = φnt. Finally, the probability to be at the K-th state at any
arbitrary time is computed as πs

K = 1−
∑K−1

k=0 πs
k, given that

∑K
k=0 π

s
k = 1.

4 Performance Results

Results from the queueing model are compared with the ones obtained by
simulation. Simulations are done in C++, carefully considering the de-
scribed scenario. The considered parameters are: L = 1872 bits (constant),
R = {r1, r2}, with r1 = 50 Kbps and r2 = 150 Kbps. Without loss of gen-
erality, here it is assumed that the probability that r1 is the minimum rate

when ς frames are scheduled is p(r1, ς) =
(

ς−1
Υ−1

)
, with Υ ≥ M a scaling

parameter. Then, the probability that a space-batch will be transmitted at
r2 is p(r2, ς) = 1− p(r1, ς).

In Figure 3 the blocking probability (Pb = πs
K) is shown for K = 25

frames, two different number of antennas (M = 4 and M = 8) and two
different number of MNs (N = 8 and N = 80) against the aggregate traffic
load in bits/second. In Figure 4 the average delay (queueing plus transmis-
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sion time, computed by applying Little’s Law, E[D] =
∑K

k=0 k·πs
k

λ(1−Pb)
) is shown

for M = 8 antennas, two queue sizes, K = 25 and K = 75 frames, a variable
number of users and a fixed traffic load equal to 350 Kbps. In both cases,
Υ is set to 8 to penalize further the presence of M = 8 antennas (i.e. the
chances to transmit at r2 with M = 4 antennas are higher).

The model shows a very good accuracy for the considered traffic loads,
number of antennas, number of active MNs and queue sizes. The points
where the queueing model shows the worst accuracy are those in which the
number of users and the number of antennas are similar. In such situation,
the DEFQ approximation is optimistic as the predicted chances to schedule
larger space-batches are higher than in the real system. Additionally, there
are some other conclusions that can be observed in the results. They can be
explained by the low number of eligible frames at each transmission, caused
by both the consideration of non-saturated traffic sources and the presence
of a finite buffer. First, increasing the number of antennas does not mean a
proportional gain on the effective system capacity (see Figure 3); second, as
the number of antennas grows, the performance gains are highly influenced
by the number of active MNs (see Figure 3 and observe that with M = 4
antennas the same results are achieved for N = 8 and N = 80 MNs); and
third, increasing the number of active MNs allows the system to perform
more efficiently until a certain value where it stabilizes (see Figure 4). From
this value on, increasing the number of MNs does not provide any substantial
gain.

5 Conclusions

A new queueing model for Multi-user MIMO systems in non-saturated con-
ditions has been presented. The assumptions done, together with the applied
modeling methodology, result in a simple, but accurate, model specially in-
dicated to be considered for the design of cross-layer MAC/PHY protocols
for such systems.
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