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Design of Low Complexity Non-binary LDPC

Codes with an Approximated

Performance-Complexity Tradeoff
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Abstract—By presenting an approximated performance-
complexity tradeoff (PCT) algorithm, a low-complexity non-
binary low density parity check (LDPC) code over q-ary-input
symmetric-output channel is designed in this manuscript which
converges faster than the threshold-optimized non-binary LDPC
codes in the low error rate regime. We examine our algorithm
by both hard and soft decision decoders. Moreover, simulation
shows that the approximated PCT algorithm has accelerated
the convergence process by 30% regarding the number of the
decoding iterations.

Index Terms—Nonbinary LDPC, EXIT chart, performance-
complexity tradeoff, Gallager decoding algorithm b.

I. INTRODUCTION

Investigation over Galois field GF (q), q = 2p, shows that

q-ary LDPC codes have potentially better performance than

binary LDPC codes for not very long block length at the

cost of higher decoding complexity, and irregular LDPC codes

can outperform the regular LDPC codes [1]. The design of

high-performance nonbinary LDPC codes has been studied in

the literature [2]–[4]. A major concern of q-ary LDPC is the

decoding complexity.

PCT analysis in [5], [6] utilizes the nature of binary

iterative decoder, in which messages passing through each

iteration, can be profiled by a single parameter. The code

design problem is then reduced to the shaping of the decoding

trajectory of extrinsic information transfer (EXIT) chart for

an optimal PCT [6], where they show that the (decoding)

complexity optimized binary LDPC codes outperforms the

threshold optimized binary LDPC codes. However, messages,

passing through the nonbinary LDPC decoder, are vectors [4].

The main challenge in cooperating PCT in nonbinary LDPC

codes design is how to characterize the decoding complexity

as a uni-parametric transfer function. To solve this problem,

we present an irregular EXIT chart by using an upper bound

of the message error probability, based on which, an approx-

imated performance-complexity tradeoff (PCT) algorithm is

put forward to design irregular nonbinary LDPC codes with

optimized decoding complexity.
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However, advantages of the proposed approximated PCT

algorithm are obvious: firstly, [2], [3] give methods to predict

the performance threshold for nonbinary LDPC codes, but the

complexity can not be optimized based on these procedures.

The presented EXIT chart can be also used to reduce the

decoding complexity. Secondly, the complexity optimization

algorithm in [5], [6] is applicable for binary LDPC codes with

rates greater than 1/4. But the optimization algorithm in this

manuscript is a universal method in the sense that, when q = 2,

the algorithm coincides with binary case.

II. PRELIMINARIES

A. LDPC Codes

An LDPC code is called regular if the column and row

weight of the parity check matrix is constant, respectively.

The irregular LDPC codes can be characterized by variable

degree distribution

λ(x) =
∑

i>2

λix
i−1, (1)

and check degree distribution

ρ(x) =
∑

i>2

ρix
i−1, (2)

from an edge-perspective, where λi and ρi are the fraction

of edges belonging to degree-i variable and check node,

respectively. Using this characterization, code rate R is given

by R = 1 −
∫

1

0
ρ(x)dx

∫
1

0
λ(x)dx

, and λ(1) = ρ(1) = 1. Due to

this characterization, Fig. 1 gives the depth-one decoding tree

for a degree-i variable node. During one iteration, messages

(beliefs) are passed from the input to the output of the tree.

The EXIT chart based on message error probability of LDPC

codes can be given by

pout =
∑

i>2

λifi(pin), (3)

where pin is the input error probability and fi is the elementary

EXIT chart associated with degree-i depth-one tree [7] as in

Fig. 1. The initial probability is calculated by p0 = Pe(Dch),
where Pe denotes the error probability and Dch is the con-

ditional probability distribution function (pdf) of the message

from channel. Then the number of decoding iterations is given

[5], [6] by

N =

∫ p0

pt

(

p ln

(

p
∑

i>2 λifi(p)

))−1

dp, (4)
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where pt is the target error probability.

Output from previous iteration

Input for next iteration

Channel

Qout

Fig. 1. Depth-one decoding tree.

B. Symmetric Conditions for Nonbinary LDPC Codes

A log-domain FFT-QSPA (The fast Fourier transform q-

ary sum-product algorithm) decoder is used in [4]. The log

likelihood ratio vectors (LLRV) are fed into the decoder. The

ith element of LLRV can be calculated as li = ln p0

pi

, where

pi = Pr(y|x = i), and y is the channel observation of variable

node x. In [4], a generalized symmetric condition for q-ary-

input symmetric-output channel (q-ary PSK modulated chan-

nels for prime q and binary-modulated channels for q = 2p)

is given by

Pr(y|x = a) = Pr(I[a]y|x = 0), ∀a ∈ GF (q),

where I[a] is a (q− 1)× (q− 1) diagonal matrix with the i-th
diagonal entry ri⊗a, i = 1, 2, ..., q− 1, r is the primitive root

of the corresponding field, and ⊗ is the mod-q multiplication.

Further, it’s proven that, under this symmetric condition, the

error performance of an LDPC code is independent of the

transmitted codeword. So, analysis (EXIT chart) for q-ary

LDPC codes based on all-zero codeword will suffice for the

decoder.

III. COMPLEXITY-OPTIMIZED NONBINARY LDPC CODES

This section proposes a irregular nonbinary EXIT chart

based on an upper bound of message error probability. Further,

a complexity optimization algorithm based on the EXIT chart

is put forward to design low decoding complexity q-ary LDPC

codes which are examined by both hard and soft decision

decoders.

A. Irregular EXIT Chart for Nonbinary LDPC Codes

Assuming all zero codewords are sent, a well designed

EXIT chart can be adopted to construct q-ary LDPC codes

with optimized PCT over q-ary-input symmetric channel.

Based on symmetric conditions, EXIT chart is first devel-

oped for Turbo codes as pictorial demonstration of iterative

decoding process [8]. Later, a more accurate approximation

is applied to binary LDPC to design good performance code

ensemble according to their degree distributions [7]. When it

is applied to q-ary LDPC, [4] generalizes the symmetric con-

dition, gives a Gaussian approximation to non-binary density

evolution, and shows that, by using a channel adapter, static

channel can be forced to be symmetric. A more systematic

approach to design q-ary LDPC codes is given in [9], where

they use coset codes to symmetrize the memoryless channels,

and design good coset GF (q) LDPC codes too. An EXIT chart

based on new mutual information metric is given in [2] using

a Gaussian mixture distribution which is less computationally

intensive. The EXIT chart for q-ary LDPC is also studied in

[3].

These methods can well predict the performance thresholds

of LDPC codes with infinite block length. But the decoding

complexity can not be optimized based on these design proce-

dure. So, instead of giving method for predicting the precise

performance of q-ary LDPC codes, we present a complexity

optimization algorithm by using Gallager’s formula which is

an upper bound of message error probability for FFT-QSPA

decoder and can be also used as an extended analysis for

Gallager decoding algorithm b (Gal-b) [10].

The reasons why we adopt the Gallager’s formula to extend

the PCT analysis to non-binary LDPC codes are as follows. (i).

This formula has been shown of great potential in designing

excellent irregular LDPC codes for soft decision decoders in

[11], where they show that given the degree distributions,

one can construct decoding graphs for any number of nodes

with the correct edge fractions, under belief propagation

algorithm, by using Gallager’s formula. The designed results

can be directly applied to soft decision decoders. (ii) For

practical considerations, this formula simplifies the analysis

of convergence behavior of q-ary LDPC codes and makes the

design of complexity-optimized q-ary LDPC codes possible.

From this formula [10], it is known that for a degree-k check

node, the probability of either no errors or of the summation

of errors is equal to 0 (mod-q) in one of the k−1 parity check

sets is

Qout,k =
1 + (q − 1)(1− qpin

q−1 )
k−1

q
, (5)

where pin is the input error probability of messages from a

variable node to a check node. For an irregular-check-degree

depth-one tree, define Qout as

Qout =
∑

k>2

ρkQout,k. (6)

For a variable with degree dv = i, the output message error

probability pi,out = fi(pin), where fi is the uni-parametric

element EXIT chart given by

fi(pin) = p0 − p0

i−1
∑

l=l0

(

i− 1

l

)

Ql
out(1 −Qout)

i−1−l+

(1−p0)(q−1)

i−1
∑

l=l0

(

i− 1

l

)(

1−Qout

q − 1

)l (

1−
1−Qout

q − 1

)i−1−l

,

(7)
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where p0 is the initial error probability from the channel. The

second additive term in Eq. (7) is the probability of message

received in error in the variable and then corrected, while the

third additive term is the probability that l0 check nodes agree

on the same error message. l0 is the smallest integer chosen

to minimize pout, subject to l0 > (i− 1)/2, for which

1− p0
p0

6
Ql0

out(q − 1)i−2

(1 −Qout)(2l0+1−i)(q − 2−Qout)(i−1−l0)
. (8)

From [4], [6], it is known that the overall decoding complex-

ity is proportional to NE, where N is the number of decoding

iterations and E is the number of edges in Tanner graph.

Since each codeword encodes Rn log q information bits, the

decoding complexity per information bit is O( NE
Rn log q

). Then

the decoding complexity can be formulated as

K =
NE

Rn log q
=

N(1−R)

R log q
∑

i>2
ρi

i

. (9)

So, complexity optimization is equivalent to finding the unique

local minimum of K in general, because the convexity can not

be always guaranteed [5], [6].

B. A General Method for Constructing Irregular q-ary LDPC

Codes with Optimized PCT

The fact that q-ary LDPC codes with small mean column

weight d̄v can outperform other LDPC codes, has been known

for years [1], [4]. For large field order, average columns weight

d̄v of the best q-ary LDPC [1], [4] will tend to 2, which is

also called q-ary cycle LDPC codes [12]. Irregular q-ary LDPC

codes with small d̄v, i.e. 2 < d̄v < 3, can outperform other

LDPC codes [1], [4]. In this manuscript, we do not restrict the

variable degree to only two small numbers as in [13], hoping

to find better codes.

Considering irregular q-ary LDPC codes with degree distri-

bution λ(x) and ρ(x), we set a target rate R0, R > R0. Then

the optimization algorithm in [6] is modified as

minimize
1−R0

R0 log(q)
∑ ρi

i

∫ p0

pt

(

p ln

(

p
∑

λifi(p)

))−1

dp.

subject to p <
∑

λifi(p);

∑

i

(λi/i) >

∑

i(ρi/i)

1−R0
;

λi > 0, ρi > 0;
∑

i

λi =
∑

i

ρi = 1;

‖λ− λ̄‖∞ < ζ1, ‖ρ− ρ̄‖∞ < ζ2. (10)

where λ̄ and ρ̄ can be initialized as the threshold-optimized

LDPC codes suggest [4], [6]. R0 is fixed which is lower than

the rate of the code (λ̄, ρ̄). ζ1 and ζ2 are carefully set to be

small values to guarantee finding the unique local maximum

[5], [6]. The constraint p <
∑

λifi(p) is substantial for which

this optimization algorithm is valid.

Note that, this irregular algorithm is different to the quasi-

regular optimization in [6] in the sense that the proposed

algorithm updates λ̄ and ρ̄ by the recent optimal values in each

iteration through which we obtain the convergence-optimized
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Fig. 2. Performance comparison according to BER.

q-ary LDPC codes.. More importantly, a mild condition, i.e.

{λi|f(pin) > e2pin}, is given in [5], [6], under which f(pin)
is a convex function of λi. The complexity-optimized q-ary

LDPC codes, resulting from our irregular algorithm, has a

little lower threshold than the original one, but converges

faster at higher SNR regime. We take the q-ary LDPC codes

with variable degrees restricted to 2 and 3 [12], [13] for

example. If the message error probability is sufficiently small,

then Qout,k ≈ 1 − (k − 1)pin. From Eq. (6), calculate

Qout ≈ 1−(τ1+ρτ2−1)pin, and Q2
out ≈ 1−2(τ1+ρτ2−1)pin,

where τ1 and τ2 is the check degrees. In addition, the element

EXIT charts of the designed q-ary LDPC codes are

f2(pin) = 1− (2− p0)Qout,

f3(pin) = p0 +
1 + p0
q − 1

(1− 2Qout +Q2
out)−Q2

out.

Then, we have

f(pin) ≈ (p0 − 1) + (2− λ2p0)(τ1 + ρτ2 − 1)pin. (11)

It is easy to verify that Eq. (11) does not always satisfy the

convex condition. Numerical simulations nevertheless suggest

that, there exists a unique local optimum. In table II, we

give the minimum average column weight of the parity check

matrix, i.e. Td̄v
, in terms of the code rate, such that the

optimization algorithm is valid.

IV. SIMULATION RESULTS

The q-ary LDPC codes in the manuscript are construct by

the modified progressive edge-growth (PEG) algorithm. If the

variable degrees are restricted to 2 and 3, We estimate the

number of iterations when the message error probability is

reduced to 10−6 from 10−2. Table I gives the estimated and

actual number of iterations according to different d̄v and d̄c
for Gal-b. Table II gives the required smallest d̄v , i.e. Td̄v

,

for different code rate R, such that the proposed optimization

algorithm is valid for the soft decision decoder.

Then, we show how to reduce the decoding complexity

of a given code. Considering the threshold optimized 4-ary



IEEE COMMUNICATIONS LETTERS. VOL. X. NO. X. XXXXXX 2012 4

TABLE I
NUMBER OF ITERATIONS FOR GALLAGER DECODING ALGORITHM B.

(d̄v , d̄c) f(pin) estimated actual

(2.7, 3.75) 0.62pin + 4.97p2
in

− 18.24p3
in

+ 27.53p4
in

− 23.28p5
in

+ 10.75p6
in

− 2.09p7
in

21.1 22
(2.7, 3.6) 0.59pin + 5.3p2

in
− 16.25p3

in
+ 23.20p4

in
− 18.20p5

in
+ 8.01p6

in
− 1.45p7

in
19.04 18

(2.65, 3.53) 0.69pin + 4.71p2
in

− 14.46p3
in

+ 20.11p4
in

− 15.53p5
in

+ 6.48p6
in

− 1.13p7
in

26.67 26
(2.68, 3.94) 0.70pin + 5.79p2

in
− 20.19p3

in
+ 32.23p4

in
− 28.81p5

in
+ 14.11p6

in
− 2.93p7

in
28.81 28

(2.65, 3.68) 0.72pin + 5.00p2
in

− 16.32p3
in

+ 24.15p4
in

− 19.92p5
in

+ 8.95p6
in

− 1.69p7
in

30.97 31

LDPC codes with block length 30000 bits reported in [4],

[6], characterized by λ(x) = 0.249009x + 0.200042x2 +
0.02177703x5+0.161403x6+0.0489424x8+0.0381342x16+
0.0874772x18 + 0.0154621x19 + 0.177761x49 and ρ(x) =
0.439929x7 + 0.560007x8, the complexity optimized 4-ary

LDPC code characterized by λ(x) = 0.5503x+ 0.0297x3 +
0.1304x4 + 0.2003x15 + 0.0893x20 and ρ(x) = 0.2998x3 +
0.7002x4. We give the bit error rate (BER) and word error

rate (WER) in Fig. 2 and Fig. 3 by calculating the average

error rate from 100 times experiments. We expect that the

complexity optimized code will reach a BER of 10−7 faster at

a smaller number of iterations, while maintaining the excellent

performance as the original one. Let C1(N) and C2(N) be

the original and optimized codes, respectively, where N is the

number of iterations. Fig. 2 shows that the optimized code

outperforms the original one with faster convergence rate at

a small N . C2(19) even converges faster than C1(27). The

convergence process has been accelerated by 30% regarding

the number of decoding iterations.

TABLE II
THE SMALLEST d̄v REQUIRED FOR DIFFERENT RATES

R 1/6 1/5 1/4 1/3 1/2 2/3
T
d̄v

2.37 2.40 2.48 2.56 2.70 2.81
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Fig. 3. Performance comparison according to WER.

V. CONCLUSION AND DISCUSSIONS

The proposed PCT algorithm is used to design irregular

nonbinary LDPC codes with optimized decoding complexity.

However, the encoding complexity is not optimized during

the design procedure. A future work of this manuscript is to

construct structured nonbinary LDPC codes that can achieve

optimized decoding complexity and optimized encoding com-

plexity at the same time. In addition, upper bounds of message

error probability are used to analyze the performance of

nonbinary LDPC codes, which results in an approximated PCT

analysis for the soft decision decoder. In order to achieve faster

convergence performance, we need to construct more accurate

PCT algorithms. Another future work of this manuscript is

to find more accurate uni-parametric representation of the

decoding trajectory for the nonbinary soft decision decoders.
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