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Abstract—Beside the well-established spectral-efficiency (SE),
energy-efficiency (EE) is currently becoming an important per-
formance evaluation metric, which in turn makes the EE-SE
trade-off as a prominent criterion for efficiently designing future
communication systems. In this letter, we propose a very tight
closed-form approximation (CFA) of this trade-off over the single-
input single-output (SISO) Rayleigh flat fading channel. We
first derive an improved approximation of the SISO ergodic
capacity by means of a parametric function and then utilize
it for obtaining our novel EE-SE trade-off CFA, which is also
generalized for the symmetric multi-input multi-output channel.
We compare our CFA with existing CFAs and show its improved
accuracy in comparison with the latter.

Index Terms—Energy-efficiency, spectral-efficiency, trade-off,
single-input single-output, Rayleigh fading, closed-form.

I. INTRODUCTION

The current rise in energy demand and price will soon

make energy as valuable as spectrum for communication net-

work operators, which explains the recent trend towards more

energy-efficient communication networks [1]. The efficiency

of communication systems has usually been assessed via the

bit/s/Hz metric, which indicates how efficiently a limited

frequency spectrum is used but fails to indicate how efficiently

energy is consumed. As the latter is becoming as important

as the former, energy-efficiency (EE) or consumption metric

such as the bit/J [2] or J/bit [2], [3], respectively, must also

be included in the performance evaluation framework.

Maximizing the EE, or equivalently minimizing the con-

sumed energy, while maximizing the spectral-efficiency (SE)

are conflicting objectives which implies the existence of a

trade-off. The EE-SE trade-off concept has first been intro-

duced in [3], where an approximation of this trade-off has

been derived for the white and colored noise, as well as multi-

input multi-output (MIMO) fading channels. We have recently

proposed in [4], a simple and accurate closed-form approxi-

mation (CFA) of this EE-SE trade-off for the MIMO Rayleigh

flat fading channel. Single-input single-output (SISO) channel

being a special case of MIMO, the approximation method

of [3] and our CFA in [4] can also be applied to the SISO

scenario. However, both these CFAs are mainly accurate at

low SE in the SISO case. Thus, there is a need for designing

a dedicated and accurate CFA of the SISO EE-SE trade-off,

as we have already attempted in [5].

In this letter, our contributions are three-fold:
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• The derivation of a very accurate CFA of the ergodic

capacity over the SISO Rayleigh flat fading channel,

which differs at most by 0.5% in comparison with the

exact SISO Rayleigh flat fading ergodic capacity.

• The derivation of a very tight CFA of the SISO EE-SE

trade-off, which differs at most by 0.05 dB in comparison

with the nearly-exact SISO EE-SE trade-off.

• The generalization of this CFA for the symmetric MIMO

Rayleigh flat fading channel.

The rest of the letter is organized as follows, Section II

introduces the EE-SE trade-off concept and the approximation

method of [3]. In Section III, we derive an improved CFA of

the SISO ergodic capacity by means of a parametric function.

We then use this expression in Section IV for designing

our very tight CFA of the SISO EE-SE trade-off, which is

also generalized for the symmetric MIMO case. Numerical

results show the great accuracy of our novel CFA of the EE-

SE trade-off for both SISO and symmetric MIMO channels

in comparison with existing ones. Conclusions are drawn in

Section V. A preliminary version of this work can be found in

[5], which has been significantly improved in this paper both

in terms of accuracy and simplicity of formulation.

II. EE-SE TRADE-OFF

The EE-SE trade-off concept can simply be described as

how to express EE as a function of SE. Let us assume a

communication system consuming a total power of PΣ Watt

for achieving a transmission rate of R bit/s, then its energy

consumption per bit can be defined as Eb = PΣ/R and its

EE-SE trade-off can be formulated as [3]

Eb

N0
=

f−1(C)

S
, (1)

when assuming an idealistic power model, i.e. the total con-

sumed power PΣ is equal to the transmit power P , and where

C = f(γ) (bit/s/Hz) (2)

is the channel capacity per unit bandwidth, γ = P/(N0W ) is

the signal-to-noise ratio (SNR), W (Hz) is the bandwidth , N0

(Joule) is the noise spectral density and S = R/W (bit/s/Hz)

is the achievable SE. In addition, f−1 : C ∈ [0,+∞) 7→ γ ∈
[0,+∞) is the inverse function of f . For example, f(γ) =
log2(1 + γ) and conversely, f−1(C) = 2C − 1 in the additive

white Gaussian noise (AWGN) channel case [2], [3].

Equation (1) clearly indicates that formulating a closed-

form expression for the EE-SE trade-off of any communication

system is equivalent to obtaining an explicit expression for the

inverse function of its channel capacity per unit bandwidth, i.e.

f−1(C). So far, the latter has only been proved feasible for the
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Fig. 1. Relative approximation error between f and fv , f̃ , f̃+ as well as

f̂ vs. γ (dB).

AWGN channel and deterministic channel with colored noise

in [2] and [3], respectively. Instead, the EE-SE trade-off can

easily be formulated in closed-form via an approximation of

f−1(C) such for instance as in [3]

f−1(C) ≈ f−1
v (C) = C(Eb/N0min)2

C

S0 , (3)

and conversely,

f(γ) ≈ fv(γ) =
S0

ln(2)
W0

(
ln(2)γ

S0(Eb/N0min)

)
, (4)

where W0 denotes the real branch of the Lambert function [6].

The Lambert W function is the inverse function of f(w) =
wew and, thus, it satisfies W (z)eW (z)=z, with w, z ∈ C [6].

Its real branch, W0, is such that W0 : DW0 = [−e−1,+∞) 7→
[−1,+∞) and is monotonically increasing over DW0 . In

addition, Eb/N0min = ln(2)/ḟ(0) and S0 = −2[ḟ(0)]2/f̈(0)
are the minimum energy-per-bit and the slope of the SE,

respectively, where ḟ(0) and f̈(0) are the first and second

order derivatives of f(γ) when γ = 0. This method is quite

generic, which has made it very popular for approximating

the EE-SE trade-off of communication systems in various

scenarios [3], [7]–[9]. However, its accuracy is limited to

the low-SNR/SE regime, especially in the SISO case, as it

can be seen in Fig. 1. In [4] and [10], we have recently

proposed an accurate CFA-based approach for formulating the

EE-SE trade-off of point-to-point MIMO and cellular uplink

systems, respectively, in any SE regime of interest. In our new

approach, we have obtained an accurate CFA of f(γ), i.e.

f(γ) ≈ g(γ), which is invertible and such that g−1(C) has

an explicit formulation. In the next section, we extend this

approach to the SISO Rayleigh flat fading channel scenario.

III. IMPROVED CFA OF THE SISO ERGODIC CAPACITY

Assuming that the number of transmit and receive antennas,

t and r, respectively, is equal to one in (2.38) of [11], the

ergodic capacity per unit bandwidth of the SISO Rayleigh flat

fading channel can be formulated as

f(γ) = eγ
−1

E1

(
γ−1

)
/ ln(2), (5)

with E1 being the exponential integral function. The function

f is continuous and differentiable for γ ∈ [0,+∞] such that
∂f
∂γ

= 1
γ

(
1− f(γ)

γ

)
. Moreover, since f(γ) < γ, it implies

that ∂f
∂γ

> 0 and, thus, f is strictly increasing and in turn

invertible. However, to the best of our knowledge, an explicit

formulation of f−1 does not exist. As previously explained,

we have recently proposed in [4] a novel approach for deriving

a CFA of the MIMO EE-SE trade-off by using the CFA of the

MIMO ergodic capacity per unit bandwidth in [12], i.e.f(γ)≈

f̃(γ)=
2n

ln(2)

[
−
(
1

2
+ln(2)

)
+

1

1+
√
1+4γ

+ln
(
1+

√
1+4γ

)]

(6)

when n = t = r, as a starting point for our derivation. The

advantage of the latter over the exact closed-form expression

in [11] is that its inverse can be explicitly derived. However,

the CFA of [12] has been derived by using random matrix

theory and considering a large number of antenna elements

n; consequently, this approximation is not very accurate for

the case of n = 1, i.e. SISO case, as it is depicted in Fig.

1. In an attempt to improve the accuracy of f̃(γ), we have

recently derived in [5] an improved approximation of f(γ)
denoted f̃+(γ) by designing a parametric function that tightly

fits f(γ)−f̃(γ). As a result, we have obtained an accurate CFA

of f(γ) but with a cumbersome expression for its inverse. In

order to have both a very tight CFA of f(γ) with a simple and

accurate formulation for its inverse, we obtain here f(γ) ≈

f̂(γ) =
1

ln(2)

[
−φ+ φ

(
1− α(b, φ)b + [γ + α(b, ϕ)]b

)−1

+
1

b
ln
(
1− α(b, φ)b + [γ + α(b, ϕ)]b

)]
,

(7)

where α(b, φ) = e
1

1−b
ln(1−bφ) and φ = 0.57721... denotes the

Euler-Mascheroni constant [13]. Note that derivation details

for obtaining (7) are provided in Section A of the Appendix.

In addition, the value of the parameter b that minimizes the

maximum of the relative approximation error between f(γ)
and f̂(γ) has been obtained by solving

min
b

max
γ

{
η
(
f̂
)}

s.t. 0 ≤ b ≤ 1/φ and − 50 ≤ γ(dB) ≤ 100,
(8)

where η(g) = 100|f(γ)− g(γ)|/|f(γ)|, such that b = 0.7066.

In Fig. 1, we plot the relative error between f and fv, f̃ ,

f̃+ as well as f̂ , as a function of the SNR γ. Note that the

lower part of the graph (range of relative error from 0 to 2.1

%) has been magnified for improving the readability of this

graph. Results clearly indicate that our novel CFA f̂ in (7) is

the most accurate of the four CFAs, it differs from f at worst

by 0.5% and on average by 0.1%. They also confirm that the

method of [3], i.e. fv, is only valid at low SNR.

IV. CFA OF THE SISO EE-SE TRADE-OFF

The main advantage of f̂ over f is the fact that its inverse

function f̂−1 can be formulated into a simple and accurate

closed-form such that f−1(C) ≈

f̂−1(C)=

[
α(b, ϕ)b−1−bϕ

[
W0

(
−bϕe−bϕ2−

bC

n

)]
−1

] 1
b

−α(b, ϕ),

(9)
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where ϕ = 1+φ−
(∑n

i=1
1
i
− ln(n)

)
. Derivation details about

(9) are given in Section B of the Appendix. The value of b that

minimizes the maximum of the absolute approximation error

between f−1(C) and f̂−1(C) can be obtained by solving

min
b

max
C

{
ǫ
(
f̂−1

)}

s.t. 0 ≤ b ≤ 1/ϕ and 0 ≤ C ≤ 40,
(10)

where ǫ(g) = |f−1(C) − g(C)|, such that b = 0.71435,

0.63363, 0.6003 and 0.5815 for n = 1, 2, 3 and 4 in (9), re-

spectively. Since f−1 does not have a closed-form expression,

the nearly-exact f−1 has been obtained numerically by using

the method described in [4]. In this letter, we aim at deriving an

improved CFA of the EE-SE trade-off for the SISO Rayleigh

flat fading channel, however, (9) is also an improved CFA for

the n×n MIMO channel, as it is indicated in Fig. 2. We plot

in Fig. 2 the absolute error in dB between f−1 and f̃−1 in

(18) of [4] as well as between f−1 and f̂−1 in (9) vs. the SE

for n = 1, 2, 3 and 4. Note that as in Fig. 1, the lower part of

the graph (range of absolute error from 0 to 0.11 dB) has been

magnified. In the SISO case, results indicate that (9) allows

us to reduce the maximum of the approximation error from

1.8 dB to 0.05 dB in comparison with the CFA in (18) of [4],

which graphically confirms the high accuracy of (9). Moreover,

the approximation error of (9) is always lower than (18) of [4]

for any SE value. In the n×n MIMO scenario, (9) provides a

lower approximation error than (18) of [4], i.e. ǫ(f̂−1) < 0.11
dB whereas max{ǫ(f̃−1)} = 1, 0.6 and 0.4 for n = 2, 3 and

4, respectively. Contrary to the SISO case, it can be noted that

(9) is less accurate than (18) of [4] in the low-SE regime but

far more accurate otherwise, especially for n = 2. However,

as n increases as the error reduction gain of (9) over (18) of

[4] diminishes up to a point where (18) of [4] will become

more accurate than (9) on average. As it is explained in the

Appendix, f and f̃ differ by |ϕ− 1| = φ−
(∑n

i=1
1
i
− ln(n)

)

at high SNR. Since φ= lim
m→+∞

(∑m
i=1

1
i
− ln(m)

)
, it implies

that |ϕ−1| converges towards zero as n increases and, hence,

the accuracy of f̃ increases. Thus, we can conclude that (9)

should mainly be used for accurately approximating f−1(C)
for n = 1 up to 5 and, then, it is better to use (18) of [4] for

higher values of n.

V. CONCLUSION

In this letter, a very tight CFA of the EE-SE trade-off

over the SISO Rayleigh flat fading channel has been derived.

First we have proposed an improved approximation of the

SISO ergodic capacity and then utilized this approximation to

derive our CFA, which has been generalized for the symmetric

MIMO channel. The great accuracy of our novel CFA has been

numerically shown for a wide range of SE values, especially

in comparison with the existing approximations.

APPENDIX

A. Derivation Insights: How to obtain (7)

Knowing that E1(x)
x→+∞∼ e−x

x
, it implies that f(γ) in (5)

simplifies as

f(γ)
γ→0∼ f0(γ) =

γ

ln(2)
(11)
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at low SNR. Similarly, f(γ) simplifies as

f(γ)
γ→+∞∼

−φ+ ln(γ) + 1
γ
(1− φ+ ln(γ)) + 1

γ2

ln(2)
(12)

at high SNR, since ex
x→0∼ 1+x and E1(x)

x→0∼ −φ−ln(x)+x.

The latter equation further simplifies as

f(γ)
γ→+∞∼ f∞(γ) =

−φ

ln(2)
+ log2(γ) (13)

in the SISO case. Moreover, it can easily be proved that f0(γ)
and f∞(γ) can be generalized as

f0(γ) =
nγ

ln(2)
and f∞(γ) = n

( −ϕ

ln(2)
+ log2(γ)

)
(14)

in the n× n MIMO case by using (2.38) of [11], where ϕ =
1 + φ−

(∑n
i=1

1
i
− ln(n)

)
.

As far as f̃(γ) in (6) is concerned,
√
1 + 4γ = e0.5 ln(1+4γ)

simplifies as 1 + 2γ at low SNR, which in turn implies that

f̃(γ)
γ→0∼ 2n

ln(2)

[
−1

2
+

1

2
(1− γ) + ln(1 + γ)

]
(15)

since (1 + x)−1 x→0∼ 1 − x. Consequently, f̃(γ) is equivalent

to

f̃(γ)
γ→0∼ f̃0(γ) =

nγ

ln(2)
(16)

at low SNR. Similarly,
√
1 + 4γ simplifies as 2

√
γ at high

SNR such that

f̃(γ)
γ→+∞∼ 2n

ln(2)

[
−1

2
+

1

2
√
γ
+ ln(

√
γ)

]
,

γ→+∞∼ f̃∞(γ) = n

( −1

ln(2)
+ log2(γ)

)
.

(17)

It can be seen from equations (14) and (16) that f(γ) and

f̃(γ) are equivalent in the low-SNR regime. Whereas, in the

high-SNR regime, equations (14) and (17) reveal that f(γ)
and f̃(γ) differ by |ϕ − 1|, which explains the shape of the
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curve of η(f̃) in Fig. 1. In order to obtain an improved version

of f̃(γ), we design a parametric function f̂(γ) based on f̃(γ)
in (6) but that ensures that f̂(γ) is equivalent to f(γ) both at

low and high SNRs such that

f̂(γ) =
n

b ln(2)

[
− 1

B
+

1

A(γ)
− ln(B) + ln(A(γ))

]
, (18)

with A(γ) = d+eb ln(c+aγ). Note that f̂(γ) = f̃(γ) for a = 4,

B = 2, c = d = 1 and b = 0.5 in (18). In the low-SNR regime,

A(γ) = d+ eb ln(c+aγ) = d+ eb ln(c(1+
a

c
γ)) simplifies as

A(γ)
γ→0∼ d+ eb ln(c)

(
1 +

ba

c
γ

)
,

γ→0∼
(
d+ eb ln(c)

)(
1 +

baeb ln(c)

c(d+ eb ln(c))
γ

)
.

(19)

Consequently, we obtain by inserting (19) into (18) that

f̂(γ)
γ→0∼ n

b ln(2)

[
− 1

B
+

1

d+ eb ln(c)

(
1− baeb ln(c)

c(d+ eb ln(c))
γ

)

− ln(B) + ln
(
d+ eb ln(c)

)
+

baeb ln(c)

c(d+ eb ln(c))
γ

] ,

(20)

since (1 + ux)−1 x→0∼ (1 − ux) and ln(1 + ux)
x→0∼ ux. Let

us assume that B = d+ eb ln(c) in (20), then the latter further

simplifies as

f̂(γ)
γ→0∼ f̂0(γ) =

[(
1− 1

B

)
baeb ln(c)

cB

]
nγ

b ln(2)
. (21)

Moreover, we obtain the following relation

c = e
1

1−b
ln( a(B−1)

B2 ) (22)

by enforcing f0(γ) = f̂0(γ). Similarly, A(γ)
γ→+∞∼ eb ln(aγ)

at high SNR and, hence, A−1(γ)
γ→+∞∼ 0 as well as

ln(A(γ))
γ→+∞∼ b ln(aγ). Thus, f̂(γ) in (18) can be re-

expressed as

f̂(γ)
γ→+∞∼ f̂∞(γ) =

−n

Bb ln(2)
− n

b
log2(B) + n log2(aγ).

(23)

Then, we obtain that

B = d+ eb ln(c) = (bϕ)−1 (24)

by ensuring that f∞(γ) = f̂∞(γ), which in turn implies that

d = (bϕ)−1 − eb ln(c). (25)

In addition, the equality log2(γ) = − 1
b
log2(B) + log2(aγ)

indicates that

a = e
1
b
ln(B). (26)

Using equations (22), (24), (25) and (26), we can re-express

the parameters B, a, c and d solely as a function of ϕ and the

parameter b, as follows,




B = (bϕ)−1,

a = e−
1
b
ln(bϕ),

c = e−
1
b
ln(bϕ)e−

1
1−b

ln(1−bϕ),

d = (bϕ)−1
(
1− e−

b

1−b
ln(1−bϕ)

)
.

(27)

Inserting (27) into (18), we can re-express our parametric

function as

f̂(γ) =
n

ln(2)

[
−ϕ+ ϕ

(
1− α(b, ϕ)b + [γ + α(b, ϕ)]b

)
−1

+
1

b
ln
(
1− α(b, ϕ)b + [γ + α(b, ϕ)]

b
)]

,

(28)

where α(b, ϕ) = e
1

1−b
ln(1−bϕ), which revert to (7) in the SISO

case, i.e. n = 1.

B. Derivation Insights: How to obtain (9) from (28)

We know that C = f(γ) ≈ f̂(γ) and, hence, it implies with

(28) that

C ln(2) ≈ n

[
−ϕ+ ϕZ−1 +

1

b
ln(Z)

]
, (29)

where Z = 1−α(b, ϕ)b+[γ + α(b, ϕ)]b. Equivalently, we can

re-expressed (29) as

−b(C ln(2)/n+ ϕ) ≈ −bϕZ−1 − ln(Z),

⇔ −bϕe−b(C ln(2)
n

+ϕ) ≈ −bϕZ−1e−bϕZ−1

,

⇔ Z−1 ≈ −(bϕ)−1W0

(
−bϕe−b(C ln(2)

n
+ϕ)

)
,

⇔ Z ≈ −bϕ
[
W0

(
−bϕe−bϕ2−

bC

n

)]
−1

,

(30)

which is finally equivalent to (9) after further simplifications.
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