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Abstract—The performance of a cellular network can be signif-
icantly improved by employing many base stations (BSs), whh
shortens transmission distances. However, there exist nankwn
results on quantifying the performance gains from deployimy
many BSs. To address this issue, we adopt a stochastic-gedme
model of the downlink cellular network and analyze the mobike
outage probability. Specifically, given Poisson distribuéd BSs,
the outage probability is shown to diminish inversely with the in-
creasing ratio between the BS and mobile densities. Furtherore,
we analyze the optimal tradeoff between the performance gai
from increasing the BS density and the resultant network cos
accounting for energy consumption, BS hardware and backhau
cables. The optimal BS density is proved to be proportionald the
square root of the mobile density and the inverse of the squar
root of the cost factors considered.

|. INTRODUCTION

Compared with the advancement in physical-layer tec
niques, reducing the cell size by using more base stati%
(BSs) have resulted in much more significant throughputsgair;éh
This observation has led to active research on the deplaym
additional BSs to shorten the transmission distances [11].é
view of prior work, it remains unclear what is the network

signal power without causing additional inter-cell ineggnce.
The resultant network performance gain is quantified in this
letter. Specifically, given fixed mobile density, it is shotiat

the outage probability diminishes inversely with incregsBS
density. It is verified by simulation that this result dedve
for asymptotically many BSs is accurate even in the pralctica
range of BS density.

Despite improvements on the network coverage, the deploy-
ment of many BSs increases the network cost including the
length of backhaul cables connecting BSs to switching esnte
[5], the BS hardware and the network energy consumption.
In this letter, the BS density is optimized for achieving an
optimal tradeoff between network performance and cost. To
this end, the network model is augmented with an additional
homogeneous PPP modeling switching centers. The optimal

S density is derived by minimizing a multi-objective cost
nction that accounts for the BS hardware, total cabletleng
tal energy consumption and the outage probability. It is
own that the optimal BS density is proportional to the sgua
bt of the mobile density and inversely proportional to the
quare root of a linear combination of the network cost fiacto

performance in the limit of many BSs, which is addressed in

this letter.

The difficulty of quantifying the asymptotic network perfor

II. NETWORK MODEL

BSs, mobiles and switching centers are modeled as inde-

mance lies in the lack of a practical and yet tractable cattul pendent PPPS;, 3, and X, of density A,, A, and A,

network model. Traditionally, cellular networks are maztél

respectively. Mobiles are assigned to the nearest BSs and

using the grid model and the evaluation of their performanggss are connected to the nearest switching centers by cable,

has to rely on simulation (see e.g., [2]). Recently, a tialeta

stochastic-geometry model for a downlink cellular netwioals

resulting in the network architecture in Fig. 1. In each time
slot, a BS in an empty cell is silent and a BS in a nonempty cell

been proposed in [3], where BSs are modeled as a homogﬁhsmits to a single mobile selected from mobiles in theesam

neous Poisson point process (PPP) which allows the denvatf.q | ith equal probability
of the mobile outage probability in a relatively simple farm '

A key observation in [3] is that the outage probability

which is called a typical aativ
mobile. We assume that all BSs use the same transmission

i?Joweru. Then the signal transmitted by a BSis received at

insensitive to the change on the BS density assuming all B§S, intended mobile with the powedy — uhy D% where
- Y

transmit. T_his assumption does nqt hold for the scenariaevh hy} are iid. expl)
BSs significantly outnumber mobiles and consequently mal

random variable modeling Rayleigh
ding, Dy is the transmission distance, andis the path-

cells are empty. This scenario exists in heterogeneousniesw |« exponent. By adopting a typical model (see e.g., [BB, t

where dense microcell and femtocell BSs are installed [1] Bbwer P,

consumed by a BS is given & = Au + B where

cellular networks where a large number of distributed amésn 4 is 4 constant an# is the offset power consumed regardless
are deployed in each cell and each antenna functions ag¢ar ihe BS is transmitting.

virtual BS [4]. In this letter, the network model in [3] is

In this letter, we consider outage probability for a typical

modified by preventing BSS in empty cells from transmitting, . o mopile as a network performance metric. UétandY™*

In the '”T“t of many B.SS’ the actlve-_BS_ den_sny converges Renote a typical active mobile and the corresponding sgrvin
the mobile density while the transmission distances dishini pq respectively. Assuming an interference-limited netwo

As a result, increasing the BS density can increase thevetei

correct decoding at each mobile requires that the received
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Then outage probability,: for U* is Py, = Pr(SIR < 6).
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B. Mobile Outage Probability

In terms ofp, P, for a typical active mobile/* can be
obtained as shown in the following proposition.

Proposition 1. Given that the transmitting BSs are approxi-
mated by ®,, the outage probability P, for a typical active
mobile U* is

Ay
Poutxﬂ)\_bv )\b/)\u—>OO (5)

_p2 (™ 1
Whereﬂ—Ga fe,% mdx
Proof: The interference powef for U* is
I= Y phy|lU=Y|™® (6)
Yed,\{y~*}

Fig. 1. The stochastic-geometry model of a cellular netwdrke base which is known as a shot noise process. Moreover, define

stations, switching centers and mobiles are marked withdbig, little dots, [ ; x _ * _ *
and stars, respectively. Each BS is connected to the neawétshing center the trgnsm_lss!on _dIStan(@_ =1U Y*| and D* has the
by cable and serves a single mobile in the corresponding cell following distribution function [3], [8]

Note that since the BSs and mobiles are distributed as PPPs, fp+(r) = 2mAyre” ™ @
the outage probability for a typical active mobile is indepe

dent with the number of other mobiles in the same cell. Using (6), (7) and the same procedure as([3)] with some

minor modifications,

I1l. M OBILE PERFORMANCE Py =1— 1 ) (8)

A. Approximation of the Transmitting BS Process 1+(1-p)
Even though the BSs are distributed as a PPP, the procE85As/Au — 00, Four Can be approximated using (4) as

of transmitting BSs is not because the empty-cell probgbili 1
for each BS depends on the cell area that is determined Pou =1~ m’ Ab/Au = 00 (9)
by BSs’ relative locations. For tractability, the trangimi A )
BSs are modeled as a homogeneous PPP derived by thinning _ ﬂﬁ ) <<)\_u> ) ' (10)
the BS process, as follows. Letp represent the empty- Ap b
cell probability, namely the probability that the typicalSB The desired result follows from (10). =

is assigned no mobile. Mathematically, _ C T _ .
g ¥ Despite the similarity in proof, the result in Proposition 1

p=Pr(Y*=U|>|Y -U|IVY e 5\{Y*'},UeX,). focuses on the regime of many BSs while that in (85)]

assumes that mobiles significantly outnumber BSs. Conse-

qguently, the outage probability derived in [3] is insen&tio

the variation on the BS density, but P, in (5) decreases ap-

proximately linearly with increasing,. This relation between
fola) 3.532 3.5,2.5,-3.5N¢ B Pt gnd \p rises _frpm two factors. First, w?thu fixed, the

I'(3.5) density of transmitting BSs and hence the interference powe
Specifically, using (1) and the fact thatis the average void measured at mobiles remain constant even\aicreasing.

probability of the mobile process for a typical Voronoi cell Second, the received signal power at an ac_tl\_/e mo_bHe Iseea
as\,/ A\, — oo due to the reduced transmitting distance.

We can obtainp using the following result from [7] that
approximates the distribution function &, the area of a
typical Voronoi cell in a Poisson random tessellation

) :/ e M fg(z)da (2)
0 as IV. OPTIMIZATION OF THE BASE-STATION DENSITY
~ (1 + Au ) ©) In this section, we analyze the optimal tradeoff between the
3.5M performance gain by employing many BSs and the resultant
~1— ﬁ7 Ao/ A — 0. @) mcre_ased ngtwork cost in terms of BS energy consumption
Ab and installation, and backhaul cable length.

It can be observed from (4) thatincreases with the growing The BS density\, can be optimized by minimizing the
ratio \,/\. Intuitively, by increasing the BS density withfollowing multi-objective functionC(As):

the mobile density fixed, cells shrink and as a result the .

empty-cell probability grows. Givem, the transmitting BSs Cw) = el eodo + sl + oFou (11)
can be approximated as a PBP with the density(1 — p)\,. Wwherecy, cq, ¢ denote the cost of laying a cable of a unit
The results derived based on this approximation is shown langth, the hardware cost of an individual BS, and the price o
simulation to be accurate ag/\, — oc. consuming one-unit power, angd represents the penalty for
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Fig. 2. Comparison between the derived outage probabiiity imulation Fig. 3. Comparison between the optimal BS density )( based on
results for increasing BS densiy, with fixed A, = 0.02 approximatedP,,: and exact value obtained numerically for increasig
with fixed A, = 0.02.

an event that a mobile is in outage. Moreovérrepresents ) S )
the average cable length per unit area and follows from [8] as! N€ accuracy of\j is verified in Fig. 3. Using the factors
\ in (14), let us define a parameter
b
pevE e K= 5ah
2/\3/2 2 3
The total powerPs; consumed by all BSs can be written as N
which represents the ratio of the penalty for outage to aera
Py, = (Au+ B)(1 — p)\» + BpAy aggregate cost for an one BS. Fig. 3 compaxgsand the
~ Apdy + B, Mo/ Ay — 00 (13) optimal density obtained numerically by varyirg. It can
be observed that by increasitg, A\; traces the exact value
where (13) follows from (4). By substituting (5) and (13)ant within a constant and small gap=( 0.07). With the gap
(11) and minimizing the resultant cost function, the optimaynchanged, this result reveals that the percentage of fenror
BS density); is obtained as the derived density reduces with increasiiig The error is
shown to be lower than0% with K > 10. It means that\;
Ay = \/*ﬁ/\u. (14) is accurate when the penalty for outage is larger than thoe pri

C
o Taet csB for operating each BS.

(15)

It can be observed that; is an increasing function gp and
\.. This suggests that it is desirable to install more BSs given VI. CONCLUSION

more serve penalty for outage events or a larger number ofin this letter, we have quantified the performance gains by
mobiles. Combining the definition o# in Proposition 1 and employing many BSs in cellular networks. Specifically, isha
(14), it can be inferred that the optimal BS density shoulfeen shown that the outage probability decreases inversely
grow with the increasing target SIR Moreover,\; grows as with the increasing BS density. Moreover, the BS density has
As increases since the cable cost for installing an additiongéen optimized by considering both performance gains and
BS is reduced. In addition\; is also larger for lower aver- network cost including BS hardware, energy consumption and
age aggregate prices for one E(% +co+ 036), which backhaul cables. The optimal BS density has been shown to
agrees with intuition. ) increase sub-linearly with the growing mobile density give
the performance metric of outage probability. Moreovegéda

BS density is desirable for lower prices for power, cabled an

BS hardware.
In this section, the derived,,; and optimal BS density

A; are validated using simulation. In the simulation, the BSs
are modeled as a homogeneous PPARm The simulation
parameters are set s= 3 dB, a = 3, and\, = 0.02.

Fig. 2 compares the outage probability computed using (5)
and its simulated values. They can be observed to converge as
Ay increases. Also plotted in Fig. 2 is the outage probabilitX o _ A _
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