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An Efficient Algorithm for Zero-Forcing Coordinated Beamforming
Haksoo Kim, Heejung Yu, Youngchul Sung, and Yong H. Lee

Abstract—The problem of beam tracking for zero-forcing
coordinated beamforming in multiple-cell time-varying multiple-
input multiple-output channels is considered. Based on null-
space perturbation theory, an efficient update algorithm for
block-diagonalization-based zero-forcing coordinated beam de-
sign is proposed and its performance is analyzed. In slowly-
varying channels, the proposed algorithm well tracks the zero-
forcing beam solution and significantly reduces computational
complexity by simply updating beamforming matrices instead of
redesigning them with new channel state information at each
time step.

Index Terms—Coordinated beamforming, coordinated multi-
point, time-varying channels, perturbation theory.

I. INTRODUCTION

IN emerging wireless communication networks with small
cells, interference is one of the main causes of performance

degradation, and thus handling interference properly is critical
for the network design. Among several interference-handling
schemes, coordinated processing among basestations (BSs)
with multiple antennas has been studied extensively as one of
the key techniques for the 3GPP LTE-Advanced standard un-
der the name of cooperative multipoint (CoMP) transmission
[1]. For the downlink CoMP transmission, joint processing
(JP) and coordinated beamforming (CB) schemes are mainly
considered [2]. In JP, multiple BSs collaborate and transmit
data to mobile-stations (MSs) in the collaborating cells with
the assumption of full data and channel state information (CSI)
sharing among the collaborating BSs. In the CB scheme, on
the other hand, each BS designs its beamforming matrix to
minimize the interference to other cell users based only on
partial CSI, i.e. CSI from the served MS and interference-
experiencing MSs, with no data sharing. The CB scheme is
thus considered to be more practical in cases where inter-cell
backhaul links have bandwidth and delay constraints.

In this letter, we consider the beam design problem for
CB under the well-known zero-forcing (ZF) framework. Most
previous works on CB have focused on the beam design
problem in static channels [3], [4], [5]. However, real wireless
channels are time-varying, and this time-varying nature of
channels has not been considered extensively for CB. Here,
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we consider the beam design for ZF CB in time-varying
multiuser multiple-input multiple-output (MIMO) channels,
and propose an efficient beam tracking algorithm for ZF CB in
time-varying MIMO channels, based on a similar technique to
that developed for interference alignment in [7]; the previous
results in [6], [7] only consider the eigenvector perturbation
for square matrices and they are not directly applicable to the
ZF CB, for which the null-space perturbation for fat matrices
should be considered. Hence, in this letter we first derive a
perturbation form for the null space of a fat matrix. Based
on this derivation, we then propose a new beam tracking
algorithm for ZF CB, and analyze the rate loss by the proposed
tracking algorithm.

Notations: We make use of standard notational conventions.
Vectors and matrices are written in boldface with matrices
in capitals. All vectors are column vectors. For a matrix A,
AT , AH , and A† indicate the transpose, Hermitian transpose,
and pseudo inverse of A, respectively. I stands for the identity
matrix. The notation x ∼ CN (µ,Σ) means that x is Gaussian-
distributed with a mean vector µ and a covariance matrix Σ.
E denotes the expectation operator. Cm×n is a set of m × n
complex matrices.

II. SYSTEM MODEL

We consider a multi-cell MIMO downlink network with K
BSs and K MSs, where BS k with Nk antennas is paired
with MS k with Mk antennas and each BS interferes with all
undesired MSs. The received signal at MS k at time n is then
given by

yk[n]=Hkk[n]Vk[n]sk[n]+

K∑
l=1,l �=k

Hkl[n]Vl[n]sl[n]+nk[n], (1)

where Hkl[n] denotes the Mk ×Nl MIMO channel from
BS l to MS k; Vl[n] and sl[n] are the Nl × dl transmit
beamforming matrix and the dl × 1 transmit data vector at
BS l, respectively; dl denotes the number of data streams
for the l-th BS-MS pair; and nk(n)(∼ CN (0, σ2I)) is the
Mk × 1 additive white Gaussian noise vector. For simplicity,
we assume that Nl = N = KM , Ml = M and dl = M for
all l.

The ZF-based CB technique is an extension of the ZF beam-
forming method in the single-cell MIMO broadcast channel
[8] to the multi-cell MIMO downlink. In the ZF-based CB,
the interference to the undesired receivers is eliminated by
designing Vk at BS k such that

H̃k[n]Vk[n] = 0, k = 1, · · · ,K, (2)
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where H̃k[n] ∈ C(K−1)M×N is the composite interference
channel matrix at BS k, defined as

H̃k[n]
Δ
=
[
HT

1k[n],· · ·,HT
(k−1)k[n],H

T
(k+1)k[n],· · ·,HT

Kk[n]
]T

. (3)

Thus, a necessary and sufficient condition for ZF CB is that
the column space of Vk[n] lies in the null space of H̃k[n],
and such a beamforming matrix can be obtained by subspace
decomposition of H̃k[n]. 1 The received signal at MS k is
free from interference from undesired transmitters when all
the transmitters design their beamforming matrices to satisfy
(2).

III. BEAM TRACKING FOR ZF CB

In time-varying channels, the beamforming matrix Vk[n]
should be designed at each time step to accommodate the
channel variation. One could design the beamforming matrix
by performing subspace decomposition of H̃k[n] at each time
step. However, this method is computationally expensive, and
the similarity between the two null spaces of two consecutive
time steps reduces the computational complexity. To this end,
we use and extend the null space perturbation result in [6],
[7] to represent the perturbed null space of a fat matrix as an
additive update form based on the channel perturbation.

Theorem 1: Let Vk[m] be a solution of equation (2) at time
m with channel {Hlk[m]}; i.e. the columns of Vk[m] form a
basis of the null space of H̃k[m]. A solution to (2) at time n
(n > m) with channel {Hlk[n]} satisfying a quasi-orthogonal
condition Vk[m]HVk[n] = I is given by

Vk[n]=Vk[m]−H̃k[m]†ΔH̃k[n,m]Vk[m]+O(‖ΔH̃k[n,m]‖22), (4)

where ΔH̃k[n,m]
Δ
= H̃k[n]− H̃k[m].

Theorem 1 is applicable to any case of Nrow ≤ Ncol, where
Nrow and Ncol are the numbers of rows and columns of
H̃k[m], respectively, and it is a generalized version of the re-
sult for Nrow = Ncol in [6]. The second term in the right-hand
side (RHS) in (4) represents the first-order estimate for the null
space update due to the channel variation ΔH̃k[n,m], and the
residual error increases with the order of O(||ΔH̃k[n,m]||22).
Theorem 1 can be proved using a similar technique to that
used in [6], and here we just provide a sketch of the proof.
To prove the theorem, we first obtain a fundamental equation
given by substituting H̃k[n] = H̃k[m] + εΔH̃k[n,m] and
Vk[n] = Vk[m] + εV

(1)
k [n,m] + ε2V

(2)
k [n,m] + · · · into

H̃k[n]Vk[n] = 0. (Here, ε = ||ΔH̃k[n,m]||2, ΔH̃k[n,m] =
1
εΔH̃k[n,m] and || · ||2 denotes the matrix 2-norm.) A
general solution to the fundamental equation is then found
iteratively and the coefficient matrices are determined by the
normalization equation Vk[m]HVk[n] = I. In the step for
obtaining the general solution, the following fact is used.
The necessary and sufficient condition for a system By = c

1If the dimension of the null space of H̃k is one, vk[n] is the unique
solution to (2) with unit norm. Otherwise, there are multiple solutions to
(2) in the form of Vk [n]Tk[n], where Tk[n] a linear transform matrix
with size (nullity of H̃k [n]) × d. To improve the rate performance under
the ZF constraint, Tk[n] should be design as the matrix composed of the
right singular vectors of the effective channel Hkk[n]Vk[n], and the transmit
power should be distributed by the water-filling algorithm. In this paper, we
only consider the computation of Vk , which is necessary anyway even for
this optimal ZF processing.

of linear equations to be feasible is for any x, xHc = 0
whenever xHB = 0. Moreover, the solution for the feasible
linear equation is y = B†c + d with Bd = 0. Theorem 1
gives a simple and efficient update formula for Vk[n] at time
n = m+ 1,m+ 2, · · · based on Vk[m]:

V̂k[n] = Vk[m]− H̃k[m]†ΔH̃k[n,m]Vk[m]. (5)

Once Vk[m] is obtained by subspace decomposition at time
m, the beam solution at time n(> m) can be obtained simply
by (5). In this case, the error between the exact and updated
beams increases with O(‖ΔH̃k[n,m]‖22). However, this error
can be reset by performing a subspace decomposition to
obtain an exact beam solution again after a certain number
of updates, say L time steps, as in [7]. Here, the period
L of subspace decomposition can be determined judiciously
based on the channel fading rate. Note that the proposed
algorithm requires only matrix multiplication and addition
during the updating phase. Thus, the complexity reduction by
the proposed algorithm is significant compared with the full
subspace decomposition method.

IV. PERFORMANCE ANALYSIS

We here examine the performance of the proposed algo-
rithm. First, let us examine the computational complexity of
the proposed algorithm with the number of flops per time
step as the complexity measure. As a reference, we consider
the non-recursive method, which computes the exact null
space of H̃k[n] by singular value decomposition (SVD) at
every time step. During the updating phase, each BS requires
4K(K − 1)M3 + KM2 flops to obtain the CB matrix for
the proposed algorithm, whereas (21K2 − 16K + 4)KM3 is
required for the non-recursive SVD-based method [9] under
the assumption that SVD is done by the Golub-Reinsch
algorithm [9]. Since the number of BS is K , the overall system
complexity per time step is K times the number of flops per
BS. Hence, the order of computational complexity for the non-
recursive SVD based scheme is O(K4) flops, whereas only
O(K3) flops are required for the proposed algorithm at each
symbol time. Fig. 1 shows the computational complexity of the
proposed algorithm and non-recursive method with different
K when M = 1. The reduction yielded by the proposed
method is significant for large K , and becomes even larger
when we consider the updating interval L.

Now, let us consider the sum rate loss incurred by using the
proposed algorithm instead of obtaining the exact null space of
H̃k[n] by subspace decomposition. For simplicity of analysis,
we consider the case of a single receive antenna, i.e., M = 1.
Since the beam vector obtained by the proposed algorithm is
not exact during the updating phase, the beam vector error in
this phase can cause a loss in the sum rate. To assess this rate
loss in the time-varying channel, we adopt the widely-used
first-order Gauss-Markov channel model [11], given by

hj
kl[n] = αklh

j
kl[n− 1] +

√
1− α2

klu
j
kl[n], n ≥ 1, (6)

for the channel coefficient between the j-th antenna of BS
l and MS k, where hj

kl[0] ∼ CN (0, 1), uj
kl[n] ∼ CN (0, 1),

and αkl(∈ (0, 1]) is the fading correlation coefficient, which
depends on the Doppler spread and the symbol duration [11].
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Fig. 1. Computational complexity versus K when M = 1.

We assume that the channel process for each MIMO channel
element evolves independently and the fading correlation
coefficients are identical for all k, l as α, i.e., αkl = α
∀k, l. Since the beam vector error increases with the channel
difference, the expected sum rate loss is a function of the
mobile speed vm and the time difference p for given K and
M . The following theorem explains the impact of vm and p
on the expected sum rate.

Theorem 2: Let vm be the mobile speed for all users and
n = m + p, p ≥ 1. Under the assumption of the first-order
Gauss-Markov channel model, the expected sum rate loss is
given by

ΔR(p, vm) ≤ O
(
log(1 + cp2v4m)

)
, (7)

for some constant c, for given K and M .

Proof : The expected sum rate loss at time n is given by

ΔR(p, vm)

= E

K∑
k=1

log

(
1 +

|hH
kk[n]vk[n]|2

σ2

)
−

E

K∑
k=1

log

(
1 +

|hH
kk[n]v̂k[n]|2∑K

l=1,l �=k |hH
kl
[n]v̂l[n]|2 + σ2

)
, (8)

≤ E

K∑
k=1

log

(
1 +

|hH
kk[n]vk[n]|2

σ2

)
− E

K∑
k=1

log

(
1 +

|hH
kk[n]v̂k[n]|2

σ2

)

+ E

K∑
k=1

log

(
1 +

∑K
l=1,l �=k |hH

kl[n]v̂l[n]|2
σ2

)
, (9)

= E

K∑
k=1

log

(
1 +

∑K
l=1,l �=k |hH

kl[n]ṽl[n]|2
σ2

)
, (10)

≤
K∑

k=1

log

(
1+

∑K
l=1,l �=kE

[‖hkl[n]‖2‖ṽl[n]‖2
]

σ2

)
, (11)

where ṽk[n] = vk[n] − v̂k[n] denotes the error between
the exact beam vector vk[n] by SVD of H̃k[n] and the
updating solution v̂k[n] by (5). (9) is obtained by decom-
posing the numerator and denominator of the second term
in the right hand side (RHS) of (8) and by using the fact
|hH

kl[n]v̂l[n]|2 ≥ 0; (10) is obtained by the fact that the first
two terms in the RHS of (9) cancel out2 and by substituting
v̂l[n] = vl[n] − ṽl[n] (with the exact beam vector satisfying
hH
kl[n]vl[n]= 0) in the third term in the RHS of (9); (11) is

2vk [n] and v̂k[n] are isotropically distributed unit vectors and independent
of hkk[n] since they are designed based on {hlk[n], l �= k}. Thus, the two
terms cancel out [10].

obtained by sub-multiplicativity of norm (i.e. |hH
kl[n]ṽl[n]|2 ≤

‖hkl[n]‖2‖ṽl[n]‖2) and by Jensen’s inequality.
Since the error of vl[n] increases with O(‖ΔH̃l[n,m]‖22),

there exists c′ such that3

‖ṽl[n]‖ ≤ c′‖ΔH̃l[n,m]‖22. (12)

Hence, E
[‖hkl[n]‖2‖ṽl[n]‖2

]
is given by

E
[‖hkl[n]‖2‖ṽl[n]‖2

]≤c′2
√
E‖hkl[n]‖4E‖ΔH̃l[n,m]‖8F . (13)

where ‖ · ‖F denotes the Frobenius norm. In (13), we use the
fact that ‖A‖2 ≤ ‖A‖F for any matrix A and the Cauchy
Schwartz inequality. Since n = m + p, from (6) hj

kl[n] and

Δhj
kl[n]

Δ
= hj

kl[n]− hj
kl[m] can be written as

hj
kl[n] = αphj

kl[m] +
√
1− α2p ũj

kl[n] and (14)

Δhj
kl[n] = (αp − 1)hj

kl[m] +
√
1− α2p ũj

kl[n], (15)

respectively, where ũj
kl[n] ∼ CN (0, 1). Then, hj

kl[n] and
Δhj

kl[n] are zero-mean complex Gaussian random variables
with variance 1 and 2(1− αp), respectively. Hence,

2‖hkl[n]‖2 =

K∑
j=1

|
√
2hj

kl[n]|2 ∼ χ2
2K (16)

and

1

1− αp
‖ΔH̃l[n,m]‖2F =

1

1− αp

K∑
k=1,k �=l

K∑
j=1

|Δhj
kl[n]|2

∼ χ2
2K(K−1), (17)

where χ2
r denotes the chi-square distribution with r degrees

of freedom. Since the q-th moment of the chi-square random
variable Z with r degrees of freedom is E(Zq) = 2q Γ(q+r/2)

Γ(r/2) ,
(13) can be rewritten as

E
[‖hkl[n]‖2‖ṽl[n]‖2

] ≤ c′′(1 − αp)2 (18)

where c′′ = 22c′2
√

Γ(2+K)
Γ(K)

Γ(4+K(K−1))
Γ(K(K−1)) and Γ (·) denotes the

gamma function. In slowly-fading channels, i.e. fdTs 	 1, the
fading correlation coefficient α can be approximated as [12]

J0(2πfdTs)=

∞∑
r=0

(−1)r

22r(r!)2
(2πfdTs)

2r≈1−(πfdTs)
2 (19)

where fd and Ts denote the maximum doppler frequency and
the symbol duration, respectively. Thus, we have 1 − αp ≈
1− (1− (πfdTs)

2)p ≈ p(πfdTs)
2 =

(
πTs

λ

)2
pv2m, where λ is

the wave length. Hence, (11) is finally given by

ΔR(p, vm) ≤ K log

(
1 +

(K − 1)π4T 4
s c

′′

σ2λ4
p2v4m

)
(20)

= O
(
log(1 + cp2v4m)

)
, (21)

where c =
(K−1)π4T 4

s c
′′

σ2λ4 . Hence, we obtain (7) �
Theorem 2 explains the behavior of the expected sum rate loss
caused by the proposed tracking algorithm in slowly-fading
channels as a function of p and vm. The upper bound of the
expected sum rate loss is a monotonically increasing function
of p2 and v4m. In the case of p = 0 and vm = 0, there is no
sum rate loss, as expected.

3A detailed information about c′ can be found in [7].
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Fig. 2. Average sum rate w.r.t. SNR when K = 3, M = 1 and L = 100.
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Fig. 3. Sum rate loss w.r.t. p when K = 3,M = 1 and vm = 10 km/h.

V. NUMERICAL RESULTS

In this section, we provide some numerical results to eval-
uate the performance of the proposed algorithm. We assume
that the carrier frequency is 2.0 GHz and the symbol duration
is 66.7μs, which is one OFDM symbol length in 3GPP LTE.
Fig. 2 shows the average sum rate with respect to (w.r.t.)
SNR during the updating period when K = 3, M = 1,
and L = 100. It is seen that the proposed algorithm and
the SVD-based algorithm have nearly the same performance.
However, the performance of the scheme that updates the
beam only once every L symbols and uses the same beam
over the L symbol period degrades considerably as the mobile
speed increases. Figs. 3 and 4 show the sum rate loss by the
proposed algorithm as a function of p and as a function of vm,
respectively. Here, we use c′ = 0.102 which is numerically
obtained. The sum rate loss increases as the update instance
becomes far from the reference beam instance, and it also
increases as the mobile velocity increases, as expected. It is
seen that the predicted behavior of the rate loss in Theorem 2
is consistent with the simulation result. Note that the sum rate
loss by the proposed beam tracking method compared with
the full subspace decomposition method is almost negligible.

VI. CONCLUSIONS

We have proposed an efficient algorithm for tracking the
beamforming matrices for the ZF CB in slowly-fading multi-
cell MIMO channels, based on the null space perturbation
theory, and have analyzed the sum rate loss of the proposed
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Fig. 4. Sum rate loss w.r.t. vm when K = 3,M = 1 and p = 10.

algorithm. The proposed algorithm provides almost the same
performance as the full subspace decomposition method with
significantly reduced computational complexity. Thus, the
proposed algorithm provides a very efficient transmit beam
design method for multi-cell MIMO systems when the ZF
criterion is used for coordinated beam design. The proposed
algorithm can be applied to OFDM systems in the slowly-
varying case that beamforming matrices need to be updated
during the transmission period. The simplest way is to apply
the proposed algorithm to each subcarrier independently, or
one can group OFDM subcarriers into several subcarrier
blocks based on the channel coherence bandwidth, and can
apply the proposed algorithm to each subcarrier block. In this
way, the beamforming matrices can be effectively tracked.
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