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Abstract

This letter presents an adaptive spectrum sensing algotitlat detects wideband spectrum using
sub-Nyquist sampling rates. By taking advantage of conggesensing (CS), the proposed algorithm
reconstructs the wideband spectrum from compressed sanfplethermore, afs norm validation
approach is proposed that enables cognitive radios (CRsa)ttonatically terminate the signal acquisition
once the current spectral recovery is satisfactory, lgatlirenhanced CR throughput. Numerical results
show that the proposed algorithm can not only shorten thetspa sensing interval, but also improve

the throughput of wideband CRs.

Index Terms

Cognitive radio, Spectrum sensing, Compressed sensirftarieed throughput.

. INTRODUCTION

Recently, cognitive radio (CR) has attracted much attendioe to its capability of exploiting

spectral holes and improving spectral utilization efficierfl], [2]. This capability is fulfilled
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by spectrum sensing which is defined as a technique for aogi@wareness about the spectral
usage and existence of primary users (PUs). With a “widegtspl awareness, CR could exploit
more spectral opportunities and achieve greater capdditys, spectrum sensing over wideband
spectrum becomes increasingly important for wideband CRs.

To implement wideband spectrum sensing, CRs need someties®amponents, i.e., wide-
band antenna, wideband radio frequency (RF) front-end,hagid speed analog-to-digital con-
verter (ADC). The wideband antenna and the wideband filteeweell-developed as evidenced
by [3] and [4]. By contrast, the development of ADC techngiag relatively behind: the
achievable sampling rate of the state-of-the-art ADC iy &6 Gspsl/[5]. To deal with this bot-
tleneck, in the classic paper [6], Tian and Giannakis firapplied compressed sensing (CS) [7]
theory to CRs for acquiring wideband signals using sub-Nstggampling rates. Consequently,
fewer compressed samples are required than predicted drathie of Nyquist sampling theory.
Furthermore, Wanget al. [8] proposed a two-step CS scheme for minimizing the sargplin
rate, where the actual sparsity was firstly estimated in tts¢ fime slot and the compressed
measurements were then adjusted in the second slot. Aulalittp Malioutov et al. [9] studied
a sequential CS approach where each compressed measureaseatquired in sequence.

Against this background, the novel contribution of thigdetis that an adaptive spectrum
sensing algorithm is presented that utilizes CS theory tsesevideband spectrum by using
an appropriate number of measurements. Different from plaesgty estimation scheme inl[8],
the proposed algorithm can adaptively adjust compresseaasunements without any sparsity
estimation efforts. Instead of the sequential measuresetap in [9], we acquire the wideband
signals block-by-block from multiple mini-time slots, amgadually reconstruct the wideband
spectrum using compressed samples until the spectral @gcaw satisfactory. The remaining
spectrum sensing time slots are utilized for data transamsghereby enhancing the throughput
of wideband CRs. Even with an unknown sparsity level, theppsed algorithm could still
automatically terminate signal acquisition at the rightdj leading to a robust spectral recovery
as well as enhanced CR throughput.

The rest of the letter is organized as follows. Secfion liddtices the system model. Section
[Tproposes an adaptive spectrum sensing algorithm. Sitiaul results are presented in Section

V] with conclusions given in Sectidn]V.
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Fig. 1. Frequency and time frame in wideband CRs: (a) frequdrame, and (b) time frame. CR employs orthogonal

frequency-division multiplexing techniques that divide twideband spectrum inté subchannels.

[l. SYSTEM MODEL

Suppose that CRs aim to exploit spectral holes within fraquéand) ~ W (Hz), as depicted
by Fig.[1(a). Periodic spectrum sensing time frame is adbpie shown in Figl11(b) where
0 ~ 7 (second) is used for performing spectrum sensing ang 7' (second) is reserved
for transmitting data. During the spectrum sensing interath CRs keep quiet as enforced by
protocols, e.g., at the media access control layer. Thesctimtinuous signal received at the
RF front-end of CR, i.e.x¢(t), is composed of only PUs’ signals and background noise. By
using sampling ratgy over the observation time, we could obtain a discrete time sequence
[n] = z¢(4), n=0,1,--- ,N—1,in avector formi € C**!. Here,N = 7 fy is chosen to be
a natural number. After spectrum sensing, CRs adopt ortieddrequency-division multiplexing
(OFDM) techniques that decompose the wideband spectriowintthogonal subchannels, each
of which has bandwidtiB; = % (V j € [1,J]), as shown in Fig.]1(a). The subchannel index is
denoted byj € [1, J] and PUs may present at any subchannels. For simplicity} l@¢note the
set of subchannel indices where PUs present. However, loasind@ Nyquist sampling theory, the
sampling rate is required to exce2l samples per second, i.¢y > 2W; for a wideband CR,
it leads to excessive memory requirement and prohibitiverggncost. This dilemma motivates
us to employ CS technologies to reduce the sampling rateewéthining the spectrum sensing
bandwidthiV.

CS theory indicates that, if a signal is sparse in some basisn be acquired by using a

sub-Nyquist sampling rate; thus, fewer compressed samptegbtained than predicted using the
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Nyquist sampling theory. Mathematically, by using sub-bigt] sampling ratefs (fs < 2W),
the compressed samplggy € CM*!, M = 7f5 < N) can be written as

y=or (1)

where® denotes a/ x N measurement matrix. Notably, Trogpal. [10] cleverly implemented
a CS system in which the measurement matrix is known and tathjiesby changing pseudo-
random sequences. For a comprehensive understanding om@®mentation, the reader is
referred to [[10].

In a CS-based spectrum sensing system, the goal is to reecinstor its discrete Fourier
transform (DFT) spectrum‘? = F7 (F denotes a DFT matrix) frony. Then the traditional
spectrum sensing algorithm, e.g., energy detection [Hl],be used to perform spectrum sensing
using the reconstructed signal. For a robust signal regptiee vector? is required to be sparse
in some basis. Due to low spectral occupancy, it is beliehad the received signal at CRs is
sparse in the Fourier domain! [6]. Thus,is often assumed té-sparse K < M < N) in the
Fourier domain, which means that the DFT spectriinconsists ofk significant components
which are not negligible. If this spectral sparsity lewels known, we can choose the number
of measurementd/ to secure the quality of spectral recovery, el.,= Coklog(N/k) for a
Gaussian measurement matrix, whékgdenotes a constant!/[7]. Nevertheless, in a practical CR
system, the spectral sparsity level is often unknown oratiffito estimate due to the dynamic
activities of PUs. Furthermore, to avoid incorrect spedateaovery, traditional CS approaches
tend to pessimistically choogg,. Both phenomena can lead to more number of measurements

and higher energy consumption, therefore, losing the adganof using CS technologies.

[Il. ADAPTIVE SPECTRUM SENSING

In this section, we study an adaptive spectrum sensing iliigofor wideband CRs.

A. System Description

Consider that a CS system, e.g., random demodulator [1@migloyed for implementing
wideband signal acquisition as the discussions in SeCfidRather than sampling the wideband
signal for the whole spectrum sensing interval in the tradél CS system, we propose to acquire

the wideband signal step by step. The proposed algorithra trterminate the signal acquisition
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TABLE |

ADAPTIVE SPECTRUMSENSING ALGORITHM.

Initialize: Divide the spectrum sensing intervalinto L mini time slots

and set the mini time slot indelx= 1 and accuracy.

While the halting criterion is false and< L, do

a). Acquire the compressed samples till the mini time &lot
resulting in the set of compressed sampjes
b). Decompose the compressed sampiemto
the training subsef?; and the testing subsa.
c). Estimate the wideband spectrum by applying a certaiovery
algorithm to [@), leading to a spectral estimate.
d). Calculatep; by usingV; and [5).
e). If the halting criterion is true
1). Terminate the signal acquisition.
2). Perform spectrum sensing Usifg.
3). Choose frequency bands and start data transmission.
Else: I =1+1.
EndIf

Halting criterion: |p; /v, — 26°| <e.

once the spectral recovery is satisfactory, and use theimergespectrum sensing time interval
for data transmission. The detailed algorithm is given ibl&d.

As shown in Fig[lL(b), the spectrum sensing interval is @diéhto L mini time slots where
[ (I € [1, L]) denotes the mini time slot index. Lt (5, € CM*!) denote the set of compressed
samples obtained from the beginning of spectrum sensinget@nd of/-th mini time slot, and
M, denote the total number of measurementgjinthus,0 < M; < --- < M. Additionally,
the sub-Nyquist sampling ratg is chosen such that/;, = fs7 = Cokmax 10g(N/knax) Where
knmax denotes the maximum sparsity that can be estimated by Emg-$pectral observations.
The set of compressed samplgsis then divided into two complementary subsets, i.e., the
training subset?, (B, € C*1) for reconstructing the DFT spectrum, and the testing subise
(171 € Cv*1) for validating the spectral recovery, wheké, = r; + v;. According to CS theory,

the training subset and the testing subset can be written as

R=®z+i=®F'X, +1 2)
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and
V=03 +7=9F X +1 3)
respectively, wherd ! is the inverse of DFT matrix®,; is ar, x N measurement matrixp,
is av; x N testing matrix, andi denotes the measurement noise modeled by circular complex
additive white Gaussian noise (AWGN) with zero mean andavengd?, i.e., @ ~ CN(0, 6?).
By using a recovery algorithm, e.g., Log-barrier appro&t®],[ we could obtain a spectral

estimateX; by solving the following problem:
min || X||1, s.t.: || B — ®F X |, <e (4)

wheree is a small recovery error threshold. Repeating this proeeda sequence of spectral
estimates, i.e.X1, Xo, - - - , X;, will be obtained by increasing the total number of measerm
M,. Obviously, we would like to identify a “best” spectral estite X; that makes the spectral
recovery errol| X, — X, |, sufficiently small. If so, we can terminate the signal acijais, and
improve the throughput of CR system by using the remainirecispm sensing time slots for
transmitting data. However, the spectral recovery eft®r — X, ||, is typically unknown due to
the unknownX, when performing sub-Nyquist sampling. Hence, for a tradiil CS system,
the signal acquisition cannot be terminated at the righetim

To identify the best spectral estimate, we propose to useetting subset/; for verifying

the spectral estimat&,. Specifically, we define the following verification paranrete
pr= Vi — ¥ F X3 (5)

As we will see in the next section, if the verification paraeney is close enough taés?v;, the

spectral estimate; is the best spectral estimate and the signal acquisitiorbeaterminated.

B. Performance Analysis and Comparison

The termination metric in the preceding section is due tddbethat the best spectral estimate
can be identified by validating the spectral estimate secpi@nd monitoring;.

Theorem 1: Lete > 0, o € (0,1), andvy, > 0. Given the sequence of spectral estimates
X’l, o ,X’l, the best spectral estimate exists and is included in thees®g when the verification
parameter, satisfies

PI‘le/UI—Q(SQ‘SE] >1—p (6)
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where o = 2exp (—%) in which U denotes the measurement noise upper bound,
ie,n<U.

The proof of Theorem 1 is given in the Appendix.

Remark 1: It shows that, if the best spectral estimate exists withiniverg sequence of
spectral estimates, the verification parameter should kkirwa certain small range around
252 with a high probability. This probability exponentiallydreases as the size of testing subset
increases. In other words, if we monitar, we have a higher probability of identifying the best
spectral estimate when using more measurements for vialid&towever, in another application
scenario where the total number of measuremaiitss fixed, there exists a trade-off between
training and testing. Even though allocating more measangsfor validation (i.e.y;) achieves
a higher probability of identifying the best spectral estim it leads to a degraded probability
of successful spectral recovery because of fewer measuatsrog training (i.e., a larger, leads
to a smallerr, = M, — v;). The investigation of this trade-off is an interestingusdor future
research.

Suppose that the signal acquisition is terminated at mmetslot/*, then the remaining

time slots/* + 1,--- , L could be used for transmitting data. Thus, the aggregateropgstic
throughput of the proposed CR system can be given by
Tl P;|H,|?
* L 1—PF;)-B; log |1+ 21— 7
C T Jézg( f,.]) J Og ( _'_ NOBJ ( )

whereF; ; is the probability of false alarn®; is the transmit power of CR transmittéf; denotes
the magnitude channel gain between the CR transmitter andCk receiver at subchanngl
and N, denotes the noise spectral density. By contrast, a traditi€S system, the aggregate

opportunistic throughput of CR system is given by

Y P;|H;J?
C = = %(1 P;;) - B, log(l—l— NoB, ) (8)

It can be easily seen that the proposed system has superforrpance than the traditional
system due t@¢* < L in (7).

IV. NUMERICAL RESULTS

In simulations, we consider the following wideband signal:

ze(t) = i\ /E;B;sind Bj(t—a))cos (27 f;(t—a))+2(t), 9)
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Fig. 2. Examples of: (a) the wideband spectnffnand (b) the reconstructed spectrin The signal acquisition is terminated
at mini time slot 10, with the number of compressed samplé§0. The SNRs of these 8 active subbands were set to random

natural numbers between 7 dB and 27 dB.

sin(mx

where sin¢z) = =~ )« is a random time offset;(¢) is AWGN with zero mean and unit
variance, andt); is the received power at CR at subbandThe wideband signal consists of
N, = 8 non-overlapping subbands. The subbagnd in the frequency rangef] — % fi+ %],
where the bandwidtliB; = 10 ~ 30 MHz and the center frequencf; is randomly located in
(%, w — Zi] in which the overall bandwidthi” = 2 GHz. The received signal-to-noise ratios
(SNRs) of these 8 active subbands are random natural nurbbexgen 7 dB and 27 dB. One
time frame has lengtfl" = 10 us, in which the spectrum sensing interval7is= 5 us. The
spectrum sensing interval is divided info= 20 mini time slots. Rather than using the Nyquist
sampling ratefy = 2W = 4 GHz, we adopt the sub-Nyquist sampling rate = 1 GHz.
The number of compressed samples in a traditional CS systévm + fs7 = 5,000, whereas
N = fy7 = 20,000. The measurement matrix and the testing matrix follow th@dard normal
distribution with zero mean and unit variance. The measargmoise is assumed to be circular
complex AWGN, i.e.ji ~ CN(0, §2). The signal-to-measurement-noise ratio (SMNR) is sé0to
dB. The energy detection approachlin/[11] is employed toaid®Js by using the reconstructed
spectrum. For the data transmission, CRs adopt the trammwier P, = 30 ~ 50 dBm. The
channel between the CR transmitter and the CR receiver isresbto be block slow fading
channel with the path loss given by the 3GPP simulation dinelg13]: 127 + 30log,,(D),
where D (km) denotes the distance between the CR transmitter an@Rheceiver.

As we can see from Fid.] 2, the wideband signal is composed tf bigh SNR subbands
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Fig. 3. Comparison of the verification parametgfv; and the predicted valugs®. The actual spectral recovery error is also

shown.

and low SNR subbands. Using the proposed algorithm, we cacessfully reconstruct the
wideband spectrum and terminate the signal acquisitioniat time slot 10, instead of mini
time slot L = 20 when using the traditional CS algorithm. This is becauseshasvn in Fig[3,
the verification parameter becomes very clos€d® just when the (unknown) actual spectral
recovery error becomes sufficiently small. Hence, if theultesf Theorem 1 is used as the
signal acquisition termination metric, the issue of exsesaumbers of measurements can be
solved. Fig[ 4 shows that the wideband CR using the propolgedithm outperforms the CR
system using the traditional CS algorithms. The througlgain improves as the transmit power
increases. The reason is that, even with the same sub-Nyspispling rate, the proposed
algorithm utilizes less time slots for performing spectrsansing than that of traditional CS

algorithms.

V. CONCLUSIONS

In this letter, we have proposed an adaptive spectrum sgradgorithm for improving the
throughput of wideband CRs using CS technologies. It has lswwn that the proposed
algorithm can successfully reconstruct the wideband spectoy using a few sub-Nyquist
samples. Additionally, the wideband signal acquisitiom ¢ee automatically terminated even
if the actual spectral recovery error is unknown, thanksh® 4 norm validation approach.
Furthermore, it has been proved that the proposed CR sysdenprovide greater throughput
than the CR system using traditional CS technologies. Sitiaul results have shown that the
proposed algorithm can not only adaptively reconstruct wheeband spectrum by using an

appropriate number of measurements, but also offer endahceughput for wideband CRs.
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APPENDIX

PROOF OFTHEOREM 1

Due to the parameter setting in Section 1lI-A, the best spéa@stimate (with zero or suf-
ficiently small | X, — X||,) should exist and be included in the sequentg X, - -, X;.
AssumingX,(I € [1, L]) is the best spectral estimate, the verification paramegtean be written
as

p=Vi— CF X3 = | OF (X, - X)) + )3

v

~lils =) (nk; +n7,) (10)

i=1
whereng,; andn;; denote the real and imaginary parts of the measurement, mesgectively.

As np,; andn;,; are normally distributed with zero mean and variantewe obtainE(n3, ;) =
E(n?,) = 6, and Vatny, ;) = E(n};—0%)* = Var(nj ;) = E(nj,—0*)* = 26*. Additionally, we
find [n%,; — 6°| < |ng,|*> + 0% < U? + 6%

>§]

Lexp|— 52/2
=P\ TSR, 02+ > E(n2,— 872+ (U2 +8%)¢/3
3¢2
<2exp (‘245%1 (0% + 52)5) ‘ (11)
Considering both[(10) and (IL1), we obtain

Applying the Bernstein’s inequality [14], we can obtain

vy v
Pr HBTZ%Z—Fn%J —20% > §] =Pr “Zn%l —52+n§,i—52)

i=1 i=1

3¢2
_ 2 < — — .
Pr le 20 vl‘ 5} > 1 2€Xp< 24510, 1 2(0° 52)£) (12)

Replacing¢ by ev; in (12), we complete the proof.
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