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Fast and Accurate Approximations for the
Analysis of Energy Detection in Nakagami-m Channels

Donagh Horgan and Colin C. Murphy

Abstract—Previous research has identified several exact meth-
ods for the evaluation of the probability of detection for energy
detectors operating on Nakagami-m faded channels. However,
these methods rely on discrete summations of complicated
functions, and so can take a prohibitively long time to evaluate.
In this paper, three approximations for the probability of
detection in Nakagami-m faded channels, having distinct regions
of applicability, are derived. All have closed forms, and enable
the fast and accurate computation of key performance metrics.

Index Terms—Signal detection, cooperative systems, fading.

I. INTRODUCTION

HE analysis of energy detection in Nakagami-m faded

channels is a well-researched topic with applications in
wireless sensor networks, cognitive radio / spectrum sensing
and classical detection theory. In the last decade, several exact
methods for the evaluation of the probability of detection in
such situations have been developed [1], [2], [3]. However,
the practical use of such methods is limited due to their high
computational complexity.

To address this issue, three approximations for the probabil-
ity of detection in Nakagami-m channels are derived. As the
Rayleigh channel is a special case of the Nakagami-m channel,
the approximations can also be used to analyse performance
in Rayleigh faded environments.

II. SYSTEM MODEL

At the 7" energy detector node in a network of cooperating
nodes, the received signal, r;(¢), is defined as:

ri(t) = { n;(t) Hy

as;(t) +n;(t)  Hy, M
where n;(t) is additive white Gaussian noise (AWGN) inter-
ference at the jth node, « is the channel fading amplitude,
s;(t) is the transmitted signal measured at the j'* node,
and Hyp and H; are the null and alternative hypotheses,
respectively [4].

The power of n;(t), with reference to a 1€ resistor, U?, is
defined as a?- = 2N W, where Ny is the two sided noise
power spectral density and W is the bandwidth of the channel
of interest [5]. It is assumed that an accurate estimate of the
noise power is available at each node.

The instantaneous signal to noise ratio at the j th node, Yi»
is defined as:

M 2.2 /( i
1l e (z7)
/YJ_]\/[; U'JQ- 9 (2)
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where M is the number of samples of the received signal,
equal to twice the time bandwidth product, i.e. M = 2TW,
where T is the length of the received signal in seconds, and the
ﬁ term refers to the i*" discrete sample of the transmitted
signal [5]. It is assumed that 7" is constant at each node.

The energy detector at node ;7 computes the test statistic,
V}, from samples of the received signal 7;(¢):

M 7‘2» i
Vj/ _ Z J (022W) ] (3)
=1 J

In cooperative networks, each node compresses, and then
transmits, its test statistic to a fusion center, which decides on
the state of the channel. Under this scheme, known as hard
decision fusion, the decision probabilities at the fusion center
depend on the number of bits used to represent the test statistic
[6]. Thus, the performance of hard decision fusion is upper
bounded by the hypothetical case where infinite precision
statistics are transmitted to the fusion center. This is known
as soft decision fusion, and is equivalent in formulation to
diversity reception with square law combining [1].

In soft decision fusion, the fusion center computes an
overall test statistic according to:

vi=>"V], )
j=1

where V' is the fusion center test statistic and 7 is the number
of nodes in the network.

Ma and Li [6] have shown that the fusion center test statistic
can be closely approximated by a normal distribution with
mean Mn and variance 2M n when the channel is unoccupied,
and by a normal distribution with mean M (n+-y) and variance
2M (n+27v) otherwise, where v = Z?Zl ~v;. The fusion center
decision probabilities under soft decision fusion are therefore
well approximated by:

Py ~Q (7A ;MM:) : (5)
~ A—M(n+7)

where Py and Py(y) are the probabilities of false alarm and
detection at the fusion center, respectively, and A is the fusion
center threshold [6].

The average probability of detection under Nakagami-m
fading, Py, ., is given by:

Py ox :/0 Pi() fnak(y)dy, @)

where fnqr(7y) is the probability density function of the
instantaneous signal to noise ratio at the fusion center, -y, under
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Nakagami-m fading, given by:

1 m " mn—1_ —1%
o (3) T ®

where I'(z) is the Gamma function, 7 is the average instanta-
neous signal to noise ratio at the fusion center, and m is the
Nakagami-m fading parameter which describes the severity of
the fading [1]. When m = 1, Nakagami-m fading is equivalent
to Rayleigh fading.

As (5) and (6) simplify to the single node case when n = 1,
the decision probabilities of both hard and soft decision type
networks in AWGN, Nakagami-m and Rayleigh channels are
encapsulated by the general formulations of (5) - (7).

Inak(y) =

III. PROPOSED APPROXIMATIONS
A. Integer mn approximation
Letting n + 2 ~ n, (6) simplifies! to:
A— M(n+ ’y))
P, ~ _— .
() ~Q ( M

Substituting the error function for the @Q-function in (9), and
using the change of variables z = %, (7) becomes:

©)

1 1 > mn—1_—=x
Pyy. o {1 - W/o ™" e Terf (A + Br) dx] ,
(10
where erf(x) is the error function, A = ;\*MZ and B =
- mM;Y . Exploiting the fact that 2 Lnet = (=1) e
for n € N, (10) can be rewritten as:
1 (_1)mn71
P, ~—-|1l————— 11
dnar ™ [ T'(mn) (b
X o /00 “"erf (A + Bx)d
— e x)dz .
st \Jo t=1

Equation (11) is now of the form in [7, Equation 7.4.36]
and can be integrated accordingly. Simplifying the resulting
expression using (9), it can be shown that P, , is given by:

P NP + (_1)mn—1 (12)
dNak D) '(mn)
grn=1 | e(B) 4 [1 4 erf (A + o))
X .
5tmn—1 t 1
As, 5 tmz r represents the derivative of order mn — 1, (12) is

valid only for mn € N*. Consequently, (12) shall henceforth
be referred to as the integer mn approximation.
B. Large SN R approximation

For moderate to large values of ¥ (e.g. ¥ > —10dB), B is
also large. As a result, (12) can be further simplified to:

A—Mn
r <mn, 7>
M(Z
(1—Py) o)

P, ~P
dNak rt T'(mn)

;o (13)

IThis approximation is valid for small v only. However, Ma and Li’s
approximation requires that the number of samples be large (M > 250
is suggested). At such large numbers of samples, if ~ is large, both the
probability of detection and its approximation will converge towards unity,
and so there is no significant increase in error.
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TABLE I: Parameter values used in numerical simulations.

Parameter Values
n 1,2,3,4,5,10,20
m 0.5,1,1.5,2
M 1000, 10000, 50000
7 (dB) —21,-20,...,—1,0
Py 0.49,0.3,0.2,0.1,0.05,0.01, 0.005,
0.001, 0.0005, 0.0001, 0.00005, 0.00001

where I'(z,y) is the upper incomplete Gamma function.

The simplified form of (13) clearly illustrates the relation-
ship between detection probability and channel parameters
when the average signal to noise ratio is moderate to large.
Consequently, it shall be referred to as the large SNR
approximation.

C. Large mn approximation

For large values of mn, (12) requires high order differenti-
ation, which increases computation time. The ﬁ term also
becomes very small with increasing mn, and so precision may
become a problem, depending on the implementation platform.
This motivates a further approximation of Py, for large
values of mn.

When mn is large, the probability density function given
in (8) can be well approximated by a normal distribution (see
Figure 1) with mean n75 and variance 21~
m _mh=n)?

—e 252n

2mn 19

fANak(’Y) ~

2|~

where fNak(v) ~ fnak(7y) for large mn.
Substituting (9) and (14) into (7) and using the approxima-
tion proposed by Lépez-Benitez and Casadevall [8]:

erf(x) ~1— 262aw2+\/§bw+c (15)

where a, b and ¢ are the min-MARE parameters defined in
[8], it can readily be shown that Py, _, can be written as in
(16).

The integrals in (16) are of the form in [9, Equation 2.325-
13] and can be integrated accordingly to yield (17), where
z = %}\W and D = m — a”5?M. Equation (17) is valid
for mn € RT and, henceforth, it shall be referred to as the

large mn approximation.

IV. NUMERICAL RESULTS
A. Accuracy

Using the integer mn approximation for mn < 10 and
the large mn approximation for mn > 10 (the selection of
a “good” switching point between the two is discussed in
Section IV-C), the probability mass function (PMF) of the
relative error, €,, between the exact method [3, Equation (21)]
and the approximations was calculated for each parameter set?
in Table I. As can be seen in Figure 2a, the distribution is very
tight, with a mean of —0.00301 and a standard deviation of
0.01515.

The large SN R approximation was also compared with the
exact method. For 4 > —10dB, and all other parameters as in
Table I, no significant increase in error was found. When the
average signal to noise ratio was less than —10dB, however,
the error increased rapidly and the approximation was no

2 All possible combinations of parameters were used, subject to the condi-
tion that mn € Nt giving a total of 17424 sets of input parameters.
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Fig. 1: Log-log plot of the absolute value of the mean, ||, and
standard deviation, o.,., of the relative error PMF and the mean_ and
standard deviation of the squared error, €5, between fnqr and fnqk
versus mmn.

longer useful. The PMF of the relative error between the large
SN R approximation and the exact solution is also shown in
Figure 2b. As can be seen, the distribution is very tight, with
a mean of —0.00372 and a standard deviation of 0.01179.

B. Computational complexity

It is insightful to compare the computational complexities
of the derived approximations with existing methods. Digham
et al. [1, Equation (7)] and Herath et al. [2, Equation (24)]
developed methods based on summations of confluent hyper-
geometric functions. Borwein and Borwein state that such
hypergeometric functions have a computational complexity
of order O(log?(d)M (d)), where d is the number of digits
of precision to which the function is evaluated and M (d)
is the computational complexity of the chosen multiplication
algorithm (there exist several multiplication algorithms with
differing regions of applicability) [10]. For Digham’s method,
% — 1 confluent hypergeometric functions must be evalu-
ated to compute the summation; for Herath’s method, %
confluent hypergeometric function evaluations are required.
Annamalai et al. [3, Equation (21)] developed an infinite series
method, based on incomplete Gamma functions, which are
known to have lower computational complexity than confluent
hypergeometric functions (O(v/dM (d)) according to [10]).
The number of Gamma function evaluations required increases
as M increases, ranging from nine for small M to as large
as several thousand for large M. In contrast, the proposed
approximations consist of error functions, which are known
to have lower computational complexity than both confluent
hypergeometric and Gamma functions [11]. The integer mn
approximation requires only two error function evaluations,
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(a) Integer mn / large mn, with switching point mn = 10.
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(b) Large SNR, with 4 > —10dB.
Fig. 2: Probability mass function of the relative error between the
exact method and the proposed approximations.

the large SINR approximation requires one error function
evaluation and one Gamma function evaluation, while the large
mmn approximation requires four error function evaluations.
For the integer mn approximation, the high order differentia-
tion required for large mn consumes most of the processing
time.

These differences can be seen quite clearly in Table II,
where the computation time for each method was measured?
using Mathematica 8. The integer mn method computes the
probability of detection to a high degree of accuracy in a
much faster time than any of the exact methods, although
more time is required for large mn than for small mn. As
expected, the large SN R approximation is only accurate for
SNR > —10dB, while the large mn approximation has a
consistently short computation time in all cases but is only
accurate for large mn products.

C. Switching between approximations

There is clearly a question as to how large mn should be
before (17) can be used without a significant loss in accuracy.
To answer this, consider Figure 1 where the mean and standard
deviation of the relative error PMF are plotted as functions of

3Each calculation was performed a thousand times or until more than
ten minutes of CPU time had been used - whichever came first - and the
average CPU time per calculation, fcpu, was then computed. To ensure a
fair comparison, the system cache was cleared before each iteration of each
calculation. The truncation points for Annamalai’s method were calculated
separately, and so have no impact on the results. Where no probability of
detection is given, the calculation was aborted after using more than ten
minutes of CPU time.
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Fig. 3: Receiver operating characteristics for various network types
with n = 5, m = 2, M = 10000 and 4 = —20dB. For the hard
decision fusion schemes, p indicates the average decision correlation
between nodes, as in [12], and the majority voting rule was applied
at the fusion center.

mn. As mn grows large, fNak (v) = fnak(7y). However, as a
result of the central limit theorem, f Nak(7y) converges towards
fnak(7), but never equals it [13]. Thus, there is no globally
optimum value of mn at which to switch to (17) from (12)
but, rather, it is a matter of preference, depending on how
large a relative error the designer is willing to tolerate.

If mn is small and non-integer, and the error from the use
of the large mn approximation is unacceptable then, currently,
a more computationally expensive exact method must be used.
To this end, the method developed by Annamalai et al. appears
to be the least computationally expensive.

V. APPLICATION

Using the proposed approximations, performance metrics
for both hard and soft decision fusion schemes can be gener-
ated quickly and accurately. Receiver operating characteristics
for a network with five nodes, operating in a Nakagami-m
faded channel with m = 2, are shown in Figure 3. Soft
decisions and 1-bit and 2-bit hard decisions are considered.
In the case of 1-bit hard decisions, the effect of correlated
decisions is also considered by combining the approximations
with the work of Drakopoulos and Lee [12]. In all cases, the
integer mn approximation closely matches Annamalai’s exact
method. For the soft decision fusion scheme, as mn = 10, the
large mn approximation is accurate. However, for the hard
decision schemes, the fusion center probability of detection
depends on the probability of detection at each node [6], i.e.
n = 1 in (17). Thus, the large mn approximation performs
poorly. On average, the large mn approximation was 200 times
faster than Annamalai’s exact method for soft decision fusion
and the integer mn approximation was 100-200 times faster
for hard decision fusion.

VI. CONCLUSION

Three approximations for the calculation of the probability
of detection for cooperative networks of energy detectors in
Nakagami-m faded channels were derived. These methods
allow the probability of detection to be computed quickly,
with a very small loss in accuracy. When mn is small and
mn € NT, (12) can be used to calculate the probability of
detection, and (13) may be used when SN R > —10dB; when
mn is large, then (17) may be used for mn € R*. The choice
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TABLE II: Average CPU time required for Py = 0.1.

Method n|m M |7 (dB) P, tepu (S)
Digham 1| 1 | 1000 0 0.941015 | 2.85506
Herath 1| 1 | 1000 0 0.941016 | 1.59873
Annamalai | 1 | 1 | 1000 0 0.941015 | 1.86388
Integer mn | 1 | 1 | 1000 0 0.943086 | 0.02036
Large SNR| 1 | 1 | 1000 0 0.949869 | 0.00045
Large mn | 1 | 1 | 1000 0 0.826366 | 0.00638
Digham 2 [0.5|10000 | -10 - 600
Herath 2 (0510000 | -10 |0.878277 | 7.62848
Annamalai | 2 [ 0.5| 10000 | -10 | 0.878276 | 3.15383
Integer mn | 2 | 0.5 | 10000 [ -10 | 0.879188 | 0.00082
Large SNR| 2 | 0.5 10000 | -10 | 0.891745 | 0.00088
Large mn | 2 | 0.5| 10000 | -10 | 0.806058 | 0.00588
Digham 10 | 0.5 | 10000 | -20 - 600
Herath 10 | 0.5 | 10000 | -20 - 600
Annamalai | 10 [ 0.5 | 10000 | -20 | 0.743524 | 7.59462
Integer mn | 10 | 0.5 | 10000 [ -20 | 0.745164 | 0.00166
Large SNR | 10 | 0.5 | 10000 | -20 | 0.853581 | 0.00092
Large mn | 10 | 0.5 [ 10000 | -20 | 0.749305 | 0.00647
Digham 20| 1 | 10000 | -20 - 600
Herath 20| 1 | 10000 | -20 - 600
Annamalai |20 | 1 | 10000 | -20 |0.939119 | 129.036
Integer mn | 20 | 1 | 10000 [ -20 | 0.940245 | 0.22524
Large SNR |20 | 1 | 10000 | -20 |0.999732 | 0.00045
Large mn | 20| 1 | 10000 | -20 | 0.937594 | 0.00654

of whether to use the integer mn or large mn approximations
for a given mn depends on the error the designer is willing
to accept.
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