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Accelerating Iterative Detection for Spatially
Coupled Systems by Collaborative Training

Keigo Takeuchi,Member, IEEE

Abstract—This letter proposes a novel method for accelerating
iterative detection for spatially coupled (SC) systems. AnSC
system is constructed by one-dimensional coupling of many
subsystems, which are classified into training and propagation
parts. An irregular structure is introduced into the subsystems in
the training part so that information in that part can be detected
successfully. The obtained reliable information may spread over
the whole system via the subsystems in the propagation part.In
order to allow the subsystems in the training part to collabo-
rate, shortcuts between them are created to accelerate iterative
detection for that part. As an example of SC systems, SC code-
division multiple-access (CDMA) systems are considered. Density
Evolution for the SC CDMA systems shows that the proposed
method can provide a significant reduction in the number of
iterations for highly loaded systems.

Index Terms—spatial coupling, code-division multiple-access,
small world, belief propagation, density evolution.

I. I NTRODUCTION

SPATIAL coupling has been proved to improve the
belief-propagation (BP) performance of conventional low-

density parity-check (LDPC) codes up to the correspond-
ing maximum-a-posteriori (MAP) performance [1]. This phe-
nomenon has been observed in many other problems, such as
code-division multiple-access (CDMA) systems [2]–[4], com-
pressed sensing [5]–[7], and models in statistical physics[8].
See [3], [9] for a theoretical treatment of general systems.

A spatially coupled (SC) system is constructed as a one-
dimensional chain ofL large subsystems. A slightly irregular
structure, which results in a rate loss, is introduced at both ends
of the chain so that information at both ends can be detected
successfully. BP detection consists of two stages: training
and propagation stages. In the training stage, informationat
both ends is first detected by utilizing the irregularity. We
refer to positions at which irregularity is imposed as training
positions. In the propagation stage, on the other hand, the
reliable information at both ends propagates toward the center
of the chain.Order preserved in each large subsystem enables
no error propagation. Since the rate loss due to the irregularity
at both ends vanishes asL → ∞, the best performance is
achieved1 in that limit. This implies that a long chain should
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1Reliable information fails to propagate with a finite probability when the

size of each subsystem is finite. Consequently, an infinitelylong chain may
not be best for finite-sized systems.

be used to approach the MAP performance.
When a long chain is used, many iterations are required

for propagating reliable information over the whole chain.The
purpose of this letter is to propose a novel method of coupling
for accelerating the convergence of iterations. A remarkable
effort oriented in the same direction was made by Truhachev
et al.: They proposed to divide a long chain into several
short chains and to re-connect the divided chains in a ladder-
like [10] or loop-like [11] structure. The connecting positions,
along with the end positions, correspond to the training posi-
tions. Reliable information at the connecting positions spreads
over the chains simultaneously. As a result, the propagation
of reliable information over the whole system is accelerated
compared to one long chain.

In this letter, we shall accelerate iterative detection in the
training stage by creatingshortcutsbetween distant training
positions. Reliable information at each training positionprop-
agates to the other training positions through the shortcuts,
whereas there is no collaboration between distant training
positions for conventional SC systems. This collaborative
training accelerates iterative detection in the training stage.

This letter is organized as follows: After summarizing the
notation and terminology used in this letter, in Section II we
focus on SC CDMA systems as an example of SC systems,
and explain how to connect training positions. Section III
presents the density-evolution (DE) analysis of BP detection.
In Section IV, comparisons between collaborative trainingand
non-collaborative training are made in terms of the number of
iterations. Section V concludes this letter.

For integersl andL, (l)L is equal tol+ iL for an integeri
such that0 ≤ l + iL ≤ L − 1. The set of consecutive
integers{i, i + 1, . . . , j} (i < j) is written as[i : j]. The
vector1n denotes then-dimensional vector whose elements
are all one. The Q-functionQ(·) is the upper tail probability
of the standard real Gaussian distribution. The real Gaussian
distribution with meanm and covarianceΣ is written as
N (m,Σ). In a graph, the degree of a node is defined as the
number of edges connected to the node. The distance between
two nodes is the number of edges in the shortest path that
connects the two nodes.

II. SYSTEM MODEL

A. Spatially Coupled CDMA Systems

We consider synchronousK-user SC CDMA systems over
the real additive white Gaussian noise (AWGN) channel as an
example of SC systems. Note that it is possible to apply the
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idea in this letter to the other SC systems. For simplicity in
presentation,densespreading sequences are used, whereas the
denselimit of sparse spreading sequences should be taken for
rigorous DE [12], [13]. See [3] for the details.

Transmission overL symbol periods is considered. LetNl

andN̄ = L−1
∑L−1

l=0 Nl denote the spreading factor in symbol
period l and the average spreading factor, respectively. The
received vectory = (yT

0 , . . . ,y
T
L−1)

T ∈ R
LN̄ is given by

y = Sx+w, w ∼ N (0, σ2I). (1)

In (1), x = (xT
0 , . . . ,x

T
L−1)

T ∈ {1,−1}LK denotes the
data symbol vector with binary phase shift keying (BPSK),
in whichxm ∈ {1,−1}K consists of themth data symbols of
all users. Furthermore,S represents theLN̄ ×LK spreading
matrix, constructed as

S =







b0,0S0,0 · · · b0,L−1S0,L−1

...
...

bL−1,0SL−1,0 · · · bL−1,L−1SL−1,L−1






. (2)

In (2), {Sl,m} are independentNl × K matrices that have
independent entries taking±1/

√
Nl with probability 1/2.

Furthermore,bl,m ∈ R is the(l,m)-element of the base matrix
B ∈ R

L×L, which characterizes spatial coupling. Imposing
∑L−1

l=0 b2l,m = 1 for all m normalizes the average power used
for transmitting each data symbol.

The setL = [0 : L−1] of all symbol periods is decomposed
into the training phaseT ⊂ L and the propagation phase
P ⊂ L, which are disjoint subsets ofL. LetNtr andN denote
the spreading factors in the training and propagation phases,
respectively. LargeNtr is assumed to obtain reliable estimates
of the data symbols transmitted in the training phase. The
average load̄α is defined as

ᾱ =
LK

|T |Ntr + |P|N =
{

α−1
tr

τ

L
+ α−1

(

1− τ

L

)}−1

, (3)

with τ = |T |. In (3), αtr = K/Ntr and α = K/N denote
the loads in the training and propagation phases, respectively.
Under the BPSK assumption the average load (3) is equal to
the average sum rate, and tends towardα as L → ∞ and
τ/L → 0.

B. Spatial Coupling & Collaborative Training

In one-dimensional or circular coupling with coupling
width W , a circulant matrix is used as the base matrixB:

bl,m =
1√

2W + 1
b(l−m)L , (4)

with (b0, . . . , bL−1) = (1T
W+1,0,1

T
W ). This regular base

matrix is written asB(reg)
L,W . In order to present collaborative

training, we shall introduce a graph representation of the base
matrix B.

TheL×L base matrixB can be represented by a bipartite
graph that consists ofL factor nodes andL variable nodes.
The factor nodes shown by squares correspond to the row
indices ofB, whereas the variable nodes represented by circles
are associated with the column indices. If the elementbl,m is
non-zero, there is an edge between factor nodel and variable

0

2

8
6

4

16

14

12

10

22

20

18 30

28

26
24

0

20

18

16

14

12
10

8
6

4

2

26
24

22

28

30

Fig. 1. Regular bipartite graph withL = 32 andW = 2.

nodem. Otherwise, there is no edge between the two nodes.
In this letter, we refer to the bipartite graph that represents
the regular base matrixB(reg)

L,W as the regular bipartite graph

B
(reg)
L,W . See Fig. 1 for the regular bipartite graphB(reg)

32,2 .
As an ensemble of collaborative training, we use an ensem-

ble based on a small-world (SW) network [14], which is a
model for elucidating the so-called SW phenomenon such as
“six degrees of separation.” SW networks are highly clustered,
as regular networks are,and have short path lengths between
any two nodes, as random networks do. These properties of
SW networks are suitable for accelerating iterative detection
in the training stage. In this letter, this SW-network-based
ensemble is referred to as “SW ensemble.”

Let C(reg)
W (m) ⊂ L denote the set of nodem and nodes

with distance2 from nodem in a regular bipartite graph with
coupling widthW . For example,C(reg)

2 (0) for variable nodes
is shown by the gray nodes in Fig. 1. The SW ensemble is
obtained by modifying a regular bipartite graph at positions
included in equally spacedc clusters{C(reg)

W (iL/c)}c−1
i=0 . One

could add nodes with more than two distances from nodem
into C(reg)

W (m). However, such a generalization would increase
the number of instances included in the SW ensemble. In this
letter, only nodes with distance2 from nodem are included
into C(reg)

W (m).

1) Let i = 0 and generate the regular bipartite graphB
(reg)
L,W .

2) Repeat the following for all variable nodesm ∈
C(reg)
W (iL/c) in the ith cluster: With probabilityp, re-

connect each edge that is connected to variable nodem

to a factor nodel ∈ ∪j 6=iC(reg)
W (jL/c) in the other

clusters uniformly and randomly.
3) If i = c−1, terminate the algorithm. Otherwise, go back

to Step 2) afteri := i+ 1.

The probabilityp controls a tradeoff between theclustering
property and the short-path-length property: The SW coupling
with p = 0 reduces to the highly-clustered regular coupling,
whereas it withp = 1 does to the random coupling with
short path lengths. Thus, moderatep should be used to obtain
instances with the two properties.

In bipartite graphs obtained by the algorithm above, dif-
ferent factor nodes may have different degrees, whereas all
variable nodes have degree2W + 1. We propose a heuristic
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Fig. 2. A bipartite graph obtained from the(64, 2, 0.1, 2, 14)-SW ensemble.
The black factor nodes show the nodes corresponding to the training phases.
The variable nodesm /∈ C

(reg)
2 (0) ∪ C

(reg)
2 (32) and the associated factor

nodes are omitted, since they can be restored uniquely.

algorithm for determining the training phaseT with size
τ = |T |. The proposed algorithm assigns factor nodes with
largest degrees to the training phase. Factor nodes with large
degrees serve as hubs from which reliable information spreads
over variable nodes.

1) Let τ̃ = τ , T = ∅, andd = dmax, with dmax denoting
the maximum degree of the factor nodes.

2) If the number of factor nodes with degreed is greater
than or equal toτ̃ , pick up τ̃ factor nodes from all
factor nodes with degreed uniformly and randomly,
add the corresponding indices intoT , and terminate the
algorithm. Otherwise, go to the next step.

3) Add the indicesLd that represent all factor nodes with
degreed into T , and go back to Step 2) after̃τ :=
τ̃ − |Ld| andd := d− 1.

We refer to the ensemble2 that consists of all instances
obtained by the two algorithms above as the(L,W, p, c, τ)-
SW ensemble. See Fig. 2 for an instance obtained from the
SW ensemble.

Remark 1. The degrees of the factor nodes provide an
impact on the complexity of iterative detection algorithms.
One method for making a fair comparison between regular
and irregular bipartite graphs would be to consider sparsely
spread CDMA systems in which, for factor nodes with a large
degree, small row weights are assigned to the correspond-
ing subsystems. However, this influence on the performance
vanishes in the dense limit. This argument implies that com-
parisons presented in this letter are not necessarily unfair in
terms of the complexity.

III. D ENSITY EVOLUTION

We consider an iterative detection algorithm based on BP
with the Gaussian approximation [15]. See [3] for the details.
In order to evaluate the bit error rate (BER) via DE, we take the
large-system limit in whichK and{Nl} tend to infinity with

2 The ensemble withL = 64, W = 2, and c = 2 contains all bipartite
graphs obtained by re-connection of the edges in Fig. 2. However, their
occurrence probabilities are non-uniform and determined on the basis of
the probabilityp, whereas instances contained in conventional ensembles are
assumed to occur uniformly and randomly.

the ratiosαl = K/Nl fixed for all l. The following theorem
is useful for quickly evaluating the performance of instances
picked up from the SW ensemble.

Theorem 1. In the large-system limit, the BER of each element
of the mth data symbol vectorxm in iteration i is given
by Q(

√

sirm(i)), in which {sirm(i)} are determined via the
coupled DE equations,

sirm(i) =

L−1
∑

l=0

b2l,m
σ2
l (i)

, (5)

σ2
l (i) = σ2 + αl

L−1
∑

m=0

b2l,mMMSE(sirm(i − 1)), (6)

with sirm(0) = 0 for all m. In (6), the functionMMSE(x)
denotes the minimum mean-squared error (MMSE) of the
BPSK-input AWGN channel with signal-to-noise ratio (SNR)x.

Proof: The proof is a generalization of the results in [3]
and is therefore omitted.

When a bipartite graph of coupling and the loadαtr in the
training phase are given, the DE equations (5) and (6) have a
unique fixed-point for small SNR1/σ2 or small loadα in the
propagation phase. On the other hand, there may be multiple
fixed-points for large SNR and large load. The BP threshold
for fixed SNR is defined as the maximum load such that the
DE equations have a unique fixed-point.

Definition 1. Whenαtr, a bipartite graph of coupling, and
SNR are fixed, the BP threshold is defined as the supremum
of αc such that the DE equations (5) and (6) have a unique
fixed-point for allα < αc.

See [3] for how to estimate the BP threshold. The op-
erational meaning of the BP threshold is that, whenα is
smaller than the BP threshold, the BP-based iterative algorithm
can eliminate multiple-access interference (MAI), and achieve
performance close to the single-user bound. On the other hand,
the system is MAI-limited whenα is larger than the BP
threshold. When1/σ2 = 10 dB, the BP thresholdαBP for
the uncoupled CDMA system is given byαBP ≈ 1.73078 [3].
As L and W tend to infinity with W/L → 0, on the other
hand, the corresponding BP thresholdα

(reg)
BP for the circularly

coupled CDMA system tends toward the optimal threshold
αMAP ≈ 1.98267 [3].

IV. N UMERICAL COMPARISONS

We shall make comparisons between regular coupling and
the SW ensemble. Bipartite graphs obtained from the SW
ensemble have distinctly different performance instance by
instance for small-sized graphs. Thus, we used good instances
that are obtained by examining many instances picked up from
the SW ensemble with Theorem 1.

Figure 3 shows the evolution of the BERs for the bipartite
graph of coupling shown in Fig. 2. We find that the data
symbols in the two clustersC(reg)

2 (0) and C(reg)
2 (32) are

detected first. Their BERs are not constant, because of the
irregularity of the bipartite graph in the clusters. Then, the
reliable information propagates toward the middle positions
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training phase. The bipartite graph of coupling shown in Fig. 2 was used for
the (64, 2, 0.1, 2, 14)-SW ensemble.

between the two clusters. Eventually, the BERs at all positions
tend to a small level of10−3.

Figure 4 presents comparisons between the regular coupling
and the SW ensembles. Forα = 1.9 much smaller than
the optimal thresholdαMAP ≈ 1.98267, three methods of
coupling are indistinguishable from each other. Forα = 1.98
close to the optimal threshold, on the other hand, the average
BERs for the SW ensembles converge toward a small BER
more quickly than that for the regular coupling. It is worth
noting that the(64, 2, 0.1, 2, 14)-SW ensemble outperforms
the (128, 2, 0.1, 4, 28)-SW ensemble. This implies that there
is no point in using the SW ensembles withc > 2, or that it is
difficult to find a good instance from such SW ensembles. In
order to investigate the reasons of the quick convergence, we
focus on the minimum BERs over allm = 0, . . . , L−1, shown

by the lines with pluses, which should be at a training position.
We find that the minimum BERs for the SW ensembles
converge more quickly than that for the regular coupling. This
quick convergence in the training phase reduces the overall
number of iterations. Another reason is a slight improvement
of the BP threshold: The BP thresholds for the regular coupling
and the (64, 2, 0.1, 2, 14)-SW ensemble are approximately
1.98958 (ᾱ ≈ 1.83981) and 1.99911 (ᾱ ≈ 1.84617), respec-
tively.

V. CONCLUSIONS

The SW ensemble of coupling has been proposed to accel-
erate iterative detection in the training stage for SC CDMA
systems. Instances picked up from the ensemble have direct
connections between distant training positions. The DE analy-
sis has shown that the proposed method can provide a signif-
icant reduction in the number of iterations for highly loaded
systems compared to the conventional method of coupling.
We conclude that irregular coupling in the training phase can
accelerate iterative detection for SC systems.
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