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Accelerating Iterative Detection for Spatially
Coupled Systems by Collaborative Training
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Abstract—This letter proposes a novel method for accelerating be used to approach the MAP performance.
iterative detection for spatially coupled (SC) systems. AnSC ~ When a long chain is used, many iterations are required
system is constructed by one-dimensional coupling of many 4 5-onagating reliable information over the whole chaihe
subsystems, which are classified into training and propagan . . .
parts. An irregular structure is introduced into the subsystems in purpose of th's letter is to propose a npvel .method of cogplin
the training part so that information in that part can be detected ~for accelerating the convergence of iterations. A remdekab
successfully. The obtained reliable information may spred over effort oriented in the same direction was made by Truhachev
the whole system via the subsystems in the propagation parin et al.: They proposed to divide a long chain into several
order to allow the subsystems in the training part to collabe g4t chains and to re-connect the divided chains in a ladder

rate, shortcuts between them are created to accelerate iterative . I . L.
detection for that part. As an example of SC systems, SC code- like [10] or loop-like [11] structure. The connecting pasits,

division multiple-access (CDMA) systems are considered.dnsity @long with the end positions, correspond to the training-pos

Evolution for the SC CDMA systems shows that the proposed tions. Reliable information at the connecting positionsesgs

method can provide a significant reduction in the number of over the chains simultaneously. As a result, the propagatio

iterations for highly loaded systems. of reliable information over the whole system is accelatate
Index Terms—spatial coupling, code-division multiple-access, compared to one long chain.

small world, belief propagation, density evolution. In this letter, we shall accelerate iterative detectiontia t
training stage by creatinghortcutsbetween distant training
. INTRODUCTION positions. Reliable information at each training positpop-

PATIAL coupling has been proved to improve thé9ates to the ther training po;itions through lthe Sh(B’,t.Cl_,It

belief-propagation (BP) performance of conventional |Ov\yyh(e_r§as there is no .coIIaborauon between.d|stant training
density parity-check (LDPC) codes up to the corresponB0Sitions for convepuongl SC systems. This _cpllaboranve
ing maximum-a-posteriori (MAP) performande [1]. This phelf&ining accel_erates iterative detection in the trainitagys.
nomenon has been observed in many other problems, such gkhis letter is organized as follows: After summarizing the

code-division multiple-access (CDMA) systers [2]-[4]neo notation and terminology used in this letter, in Secfidn 8 w
pressed sensingl[5]2[7], and models in statistical phy[§Es focus on SC CDMA systems as an example of SC systems,

See [3], [9] for a theoretical treatment of general systems. @1d explain how to connect training positions. Secfion Il
A spatially coupled (SC) system is constructed as a orf@€Sents the density-evolution (DE) analysis of BP degecti
dimensional chain of. large subsystems. A slightly irregular I" SectiorL IV, comparisons between collaborative trairang
structure, which results in a rate loss, is introduced at katls Non-collaborative training are made in terms of the numifer o
of the chain so that information at both ends can be deteciigfations. SectiofV concludes this letter. _ _
successfully. BP detection consists of two stages: trginin FOr integerd and, ()., is equal tol +L for an integer
and propagation stages. In the training stage, informaatonsSuch that0 < I +4L < L — 1. The set of consecutive
both ends is first detected by utilizing the irregularity. wétegers{i,i +1,....j} (i < j) is written asfi : j]. The
refer to positions at which irregularity is imposed as tirajn Vector 1, denotes thm—dllmens[onal vector wh.ose elemgnts
positions. In the propagation stage, on the other hand, & all one. The Q-functiof)(-) is the upper tail probability
reliable information at both ends propagates toward theecen©f the standard real Gaussian distribution. The real Gaossi
of the chainOrder preserved in each large subsystem enabl@itribution with meanm and covarianceX: is written as

no error propagation. Since the rate loss due to the irreiglaV (12, X). In a graph, the degree of a node is defined as the
at both ends vanishes ds — oo, the best performance isnumber of edges connected to the node. The distance between

achievel in that limit. This implies that a long chain shouldWo nodes is the number of edges in the shortest path that
connects the two nodes.
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Digital Object Identifier ** We consider synchronous-user SC CDMA systems over

1Reliable information fails to propagate with a finite protiiah when the L. . . .
size of each subsystem is finite. Consequently, an infiniahg chain may the real additive white Gaussian noise (AWGN) channel as an

not be best for finite-sized systems. example of SC systems. Note that it is possible to apply the
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idea in this letter to the other SC systems. For simplicity in 24
presentationdensespreading sequences are used, whereas the
densdimit of sparse spreading sequences should be taken for
rigorous DE [12], [13]. Se€ [3] for the details.
Transmission ovel. symbol periods is considered. Laf

received vectoy = (y¢,...,yt_,)T € RV is given by
y=8x+w, w~N(0,5°I). 1)
n@, z = (zd,...,z1_)T € {1,-1}1K denotes the 10 - 6

data symbol vector with binary phase shift keying (BPSK),

in whichz,,, € {1, —1}¥ consists of thenth data symbols of

all users. Furthermore§ represents thé& N x LK spreading Fi9- 1. Regular bipartite graph with = 32 and W' = 2.
matrix, constructed as

bo,050,0 bo,L-1S50,L-1 nodem. Otherwise, there is no edge between the two nodes.
S = : : (2) In this letter, we refer to the bipartite graph that représen
b 108010 - br1.-18nL 1101 the regular base matriB(er‘,g[) as the regular bipartite graph

Bgfﬁ,). See Fig[ for the regular bipartite gra r;g).

In @), {S. ..} are independeniv; x K matrices that have . .
independent entries taking-1/y/N; with probability 1/2. As an ensemble of collaborative training, we use an ensem-
ble based on a small-world (SW) network [14], which is a

FurtherEnXoLrebLm. €RIs the(l,m)-elemgnt of the- base matr!x model for elucidating the so-called SW phenomenon such as
B € R , which characterizes spatial coupling. Imposing

L=1,9 . ix degrees of separation.” SW networks are highly clieder

—o bi,, = 1 for all m normalizes the average power use

=0 “om. . as regular networks arand have short path lengths between
for transmitting each data symbol.

The setZ — [0 : L—1] of all symbol periods is decomposeuany two nodes, as random networks do. These properties of

into the training phasd” C £ and the propagation IohaseSW networks are suitable for accelerating iterative daiact

P C L, which are disjoint subsets df. Let Ny, andN denote in the training stage. In thﬂ's letter, this S”W-network-tdase
ensemble is referred to as “SW ensemble.

the spreading factors in the training and propagation ghasé Let C‘(;/cg) (m) C £ denote the set of node: and nodes

respectively. LargéV;, is assumed to obtain reliable estimates .~ =" ) L ;
b y 9 er th distance2 from nodem in a regular bipartite graph with

of the data symbols transmitted in the training phase. Tid" @ ) (rog) )
average loads is defined as coupling widthW. For example(; %’ (0) for variable nodes

is shown by the gray nodes in Figl 1. The SW ensemble is
5 = LK _ {at—li Lol (1 _ 1)}71’ (3) obtained by modifying a regular bipartite graph at posgion
|T|Ntx + |PIN "L L included in equally spacedclusters{C\;*® (iL/c)}¢=}. One

with 7 = |T|. In @), s = K/Nyy anda = K/N denote could add nodes with more than two distances from nede

the loads in the training and propagation phases, respéctivinto Cli*® (m). However, such a generalization would increase

Under the BPSK assumption the average Idad (3) is equalthe® number of instances included in the SW ensemble. In this
the average sum rate, and tends towarés L — oo and |etter, Only nodes with distance from nodem are included

7/L — 0. into C{I°® (m).
1) Leti = 0 and generate the regular bipartite gr@ﬁfﬁ).
B. Spatial Coupling & Collaborative Training 2) Repeat the following for all variable nodes €

c®)(iL/c) in the ith cluster: With probabilityp, re-
connect each edge that is connected to variable node
to a factor nodel € U#ic‘(fvcg)(jL/c) in the other

In one-dimensional or circular coupling with coupling
width W, a circulant matrix is used as the base mafBlx

1

bim = (1=m)L > (4) clusters uniformly and randomly.
2W +1 3) If i = ¢—1, terminate the algorithm. Otherwise, go back
with (bo,...,br—1) = (13,,1,0,15%,). This regular base to Step 2) afteri := i + 1.

matrix is written asB(LreVgV) In order to present collaborative The probabilityp controls a tradeoff between tlodustering
training, we shall introduce a graph representation of teeb property and the short-path-length property: The SW cogpli
matrix B. with p = 0 reduces to the highly-clustered regular coupling,
The L x L base matrixB can be represented by a bipartitevhereas it withp = 1 does to the random coupling with
graph that consists of. factor nodes and. variable nodes. short path lengths. Thus, moderatshould be used to obtain
The factor nodes shown by squares correspond to the rimstances with the two properties.
indices of B, whereas the variable nodes represented by circledn bipartite graphs obtained by the algorithm above, dif-
are associated with the column indices. If the elemdent is ferent factor nodes may have different degrees, whereas all
non-zero, there is an edge between factor noded variable variable nodes have degré&l” + 1. We propose a heuristic



IEEE COMMUNICATIONS LETTERS, VOL. , NO. , 2013 3

the ratiosay = K/N; fixed for all I. The following theorem
is useful for quickly evaluating the performance of insesc
picked up from the SW ensemble.

Theorem 1. In the large-system limit, the BER of each element
of the mth data symbol vectore,, in iteration i is given

by Q(+/sirm(4)), in which {sir,,, (i)} are determined via the
coupled DE equations,

XS

=
e

L1 2
. . l,m
SlI'm, (Z) = 2( ) ’ (5)
28 29 30 31 32 33 34 35 36 = i
L-1
Fig. 2. A bipartite graph obtained from tifé4, 2, 0.1, 2, 14)-SW ensemble. o (i) =0+ q Z b?, MMSE(sir,, (i — 1)),  (6)
The black factor nodes show the nodes corresponding to dirérty phases. 0 ’

The variable nodesn ¢ Cémg)(o) u Cémg)(?)z) and the associated factor )
nodes are omitted, since they can be restored uniquely. with sir,,(0) = 0 for all m. In (@), the functionMMSE(x)

denotes the minimum mean-squared error (MMSE) of the

BPSK-input AWGN channel with signal-to-noise ratio (SNR)
algorithm for determining the training phasg with size

7 = |T|. The proposed algorithm assigns factor nodes with !Droof: The proqf Is a generalization of the resultsin [3]
largest degrees to the training phase. Factor nodes wije Iai"md is therefore omitted. .

degrees serve as hubs from which reliable information sisrea \_Nhen a bipartite graph of coupling a_nd the load in the
over variable nodes. training phase are given, the DE equatidds (5) amd (6) have a

unique fixed-point for small SNR/o? or small loada in the
propagation phase. On the other hand, there may be multiple
fixed-points for large SNR and large load. The BP threshold
for fixed SNR is defined as the maximum load such that the
DE equations have a unique fixed-point.

1) Let7 =7, T =0, andd = dpax, With d,.x denoting
the maximum degree of the factor nodes.

2) If the number of factor nodes with degréeds greater
than or equal toF, pick up 7 factor nodes from all
factor nodes with degreé€ uniformly and randomly,
add the corresponding indices irfg and terminate the Definition 1. Whenay,, a bipartite graph of coupling, and

algorithm. Otherwise, go to the next step. SNR are fixed, the BP threshold is defined as the supremum
3) Add the indicesC, that represent all factor nodes withof a. such that the DE equationkl(5) ard (6) have a unique
degreed into 7, and go back to Step 2) after := fixed-point for alla < .

7—|Lq| andd :=d - 1. . . See [[3] for how to estimate the BP threshold. The op-
We refer to the ensemiflethat consists of all instanceserational meaning of the BP threshold is that, wheris

obtained by the two algorithms above as (g W, p,c,7)-  smaller than the BP threshold, the BP-based iterative ihgor
SW ensemble. See Figl 2 for an instance obtained from thgn eliminate multiple-access interference (MAI), andieh
SW ensemble. performance close to the single-user bound. On the othef,han
Remark 1. The degrees of the factor nodes provide afpe system is MAl-limited whem is larger than the BP
impact on the complexity of iterative detection algoritam&hreshold. Whenl/o? = 10 dB, the BP thresholdgp for
One method for making a fair comparison between regul#f€ uncoupled CDMA system is given bysp ~ 1.73078 [3].
and irregular bipartite graphs would be to consider spayselAS L and W tend to infinity with W/L — 0, on the other
spread CDMA systems in which, for factor nodes with a larggand, the corresponding BP threshalgh®’ for the circularly
degree, small row weights are assigned to the corresporfégfupled CDMA system tends toward the optimal threshold
ing subsystems. However, this influence on the performarfeear ~ 1.98267 [3].

vanishes in the dense limit. This argument implies that com-

parisons presented in this letter are not necessarily urifai IV. NUMERICAL COMPARISONS
terms of the complexity. We shall make comparisons between regular coupling and
the SW ensemble. Bipartite graphs obtained from the SW
[1l. DENSITY EVOLUTION ensemble have distinctly different performance instange b

We consider an iterative detection algorithm based on Bpstance for small-sized graphs. Thus, we used good inssanc
with the Gaussian approximation [15]. Séé [3] for the detailthat are obtained by examining many instances picked up from
In order to evaluate the bit error rate (BER) via DE, we take tf{1® SW ensemble with Theorel 1. o
large-system limit in which% and {N;} tend to infinity with Figure[3 shows the evolution of the BERs for the bipartite

graph of coupling shown in Fid.]2. We find that the data

2 The ensemble with, = 64, W = 2, andc = 2 contains all bipartite  Symbols in the two cluster€{*® (0) and c{"®(32) are

graphs obtained by re-connection of the edges in Eig. 2. Meweheir detected first. Their BERS are not constant, because of the
occurrence probabilities are non-uniform and determinedth® basis of

the probabilityp, whereas instances contained in conventional ensemides g,re_gular?ty of th.e bipartite graph in the CIUSte_rS' The'm_e.t
assumed to occur uniformly and randomly. reliable information propagates toward the middle posgio
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by the lines with pluses, which should be at a training positi

We find that the minimum BERs for the SW ensembles
converge more quickly than that for the regular couplingsTh
quick convergence in the training phase reduces the overall
number of iterations. Another reason is a slight improveimen
of the BP threshold: The BP thresholds for the regular cogpli
and the (64,2,0.1,2,14)-SW ensemble are approximately
1.98958 (& ~ 1.83981) and 1.99911 (& ~ 1.84617), respec-
tively.

#iterations=20, 40,..., 280 from to

A

0.4

10" |

x 2
w 10
o

10° pJ¥ V. CONCLUSIONS

The SW ensemble of coupling has been proposed to accel-
erate iterative detection in the training stage for SC CDMA
systems. Instances picked up from the ensemble have direct
connections between distant training positions. The DHyana
sis has shown that the proposed method can provide a signif-
icant reduction in the number of iterations for highly lodde
systems compared to the conventional method of coupling.
We conclude that irregular coupling in the training phase ca
accelerate iterative detection for SC systems.

10*

05 06 07 08 09 1
m/L

02 03

Fig. 3. BER versusn/L for the bipartite graph of coupling obtained
from the (64, 2,0.1, 2, 14)-SW ensemble, shown in Fifl 2/02 = 10 dB,
atgr = 1.45, anda = 1.98.
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