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A Concave-Convex Procedure for TDOA

Based Positioning
Mohammad Reza Gholami, Sinan Gezici, and Erik G. Ström

Abstract—This letter investigates the time-difference-
of-arrival based positioning problem in wireless sensor
networks. We consider the least-mean absolute, i.e., the ℓ1

norm, minimization of the residual errors and formulate
the positioning problem as a difference of convex functions
(DC) programming. We then employ a concave-convex
procedure to solve the corresponding DC programming.
Simulation results illustrate the improved performance of
the proposed approach compared to existing methods.

Index Terms– Wireless sensor network, time-difference-
of-arrival, DC programming, concave-convex procedure.

I. INTRODUCTION

Time-difference-of-arrival (TDOA) based positioning

has been proposed in the literature as an effective tech-

nique in removing the clock offset imperfection [1]. A

number of researchers have investigated the positioning

problem based on TDOA measurements. The maximum

likelihood estimator (MLE) for this positioning problem

poses a difficult global optimization problem [2]. To

avoid the difficulty in obtaining the MLE, a few subopti-

mal approaches have been proposed in the literature. For

instance, the authors in [3] formulate the TDOA based

positioning as a semidefinite programming relaxation

(SDR) problem. To formulate an SDR approach with

low complexity, the authors in [4] consider a minimax

approach and propose two suboptimal algorithms. An-

other approach based on a linear least squares (LLS)

technique is introduced in [5], which achieves good

performance for low noise variances. In addition, [6]

presents a method based on the squared-range least

squares, which has similar performance to the LLS.

To provide a good coarse estimate as a starting point

for the MLE, an efficient technique is proposed in [2]

based on projection onto convex sets. Recently a method

based on geometric circle fitting is studied in [7], which

shows good performance for sufficiently small noise
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variances. Although the proposed suboptimal algorithms

are efficient in terms of complexity, there is still some

room to improve their performance.

In this letter, we study the single node positioning

problem based on TDOA measurements. With the aim

to derive an efficient and robust approach with superior

performance compared to the existing approaches, espe-

cially for low numbers of reference nodes, we consider

the ℓ1 norm minimization of the residuals and then

formulate the TDOA based positioning problem as a dif-

ference of convex functions (DC) programming. We then

employ a concave-convex procedure (CCCP) [8] to solve

the problem. In particular, we need to solve a sequence

of second order cone programs to find an estimate of the

target position. We also simplify the problem to a linear

program and solve the corresponding CCCP in a se-

quential manner. Simulation results show the promising

performance of the proposed approach compared to the

optimal and existing suboptimal estimators. Numerical

results also illustrate that only a few sequential updatings

are required for the proposed technique to converge.

Thus, the proposed approaches have similar complexities

compared to existing suboptimal estimators.

II. SYSTEM MODEL

Consider an m-dimensional network (m = 2 or

3) with N reference (anchor) nodes located at known

positions ai ∈ R
m, i = 1, ..., N and with one target

node placed at the unknown position x ∈ R
m. Suppose

that the target node transmits a signal at time instant T0,

which is unknown to the reference nodes. Then, the TOA

measurement at reference node i can be modeled as [9]

ti = T0 +
d(ai,x)

c
+ ñi, i = 1, . . . , N (1)

where d(ai,x) , ‖x − ai‖2 is the Euclidian distance

between reference node i and the point x, c is the speed

of propagation, and ñi is the TOA estimation error at

reference node i for the signal transmitted from the target

node. The estimation error is often modeled by a zero-

mean Gaussian random variable with variance σ2
i /c

2;

i.e., ñi ∼ N (0, σ2
i /c

2) [10].

The preceding measurement model indicates that in

order to obtain an estimate of the distance between

the target node and a reference node, the parameter T0
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should be estimated as well, which makes the problem

quite challenging. One way to get rid of this unknown

parameter is to subtract the TOA measurements at ref-

erence nodes i and j, and form a TDOA measurement

assuming synchronized reference nodes. In this study, we

assume that the TDOA measurements are computed by

subtracting all the TOA measurements, except the first

one, from the first TOA. Consequently, we obtain the

range-difference-of-arrival (RDOA) measurements as

zi,1 = c(ti − t1) = di,1 + ni − n1, i = 2, . . . , N (2)

where ni = c ñi and di,1 = d(ai,x) − d(a1,x). We

collect the measurements zi,1 in (2) into a vector z as

z = [z2,1 . . . zN,1]
T ∈ R

(N−1) (3)

The MLE for the location based on the TDOA mea-

surements in (3) poses a difficult optimization prob-

lem [1]. In the next section, we propose an efficient

suboptimal estimator to solve the positioning problem.

III. PROPOSED TECHNIQUE

In this section, we take the ℓ1 norm minimization of

the residuals into account and propose a technique to

solve the positioning problem. We consider the least-

mean absolute errors of the residuals as follows:

minimize
x∈Rm

‖r‖1 (4)

where r = [r2 . . . rN ]T with ri = zi,1 − d(ai,x) +
d(a1,x). Note that for high signal-to-noise ratios (low

standard deviations of noise), the ℓ2 and ℓ1 minimization

approaches have similar performance. In addition, the

ℓ1-based minimization in (4) is a suitable approach for

dealing with the positioning problem in the presence of

outliers [11].

Using a dummy vector q = [q2 . . . qN ]T , the opti-

mization problem in (4) can be written (in the epigraph

form) as [11]

minimize
x,q

N∑

i=2

qi

subject to zi,1 − d(ai,x) + d(a1,x) ≤ qi

−zi,1 − d(a1,x) + d(ai,x) ≤ qi. (5)

The problem in (5) is a nonconvex problem and difficult

to solve. Here we employ a technique from the opti-

mization literature to solve the problem in a sequential

manner. The technique is called the concave-convex

procedure (CCCP) and aims at solving a nonconvex

problem including the difference of convex functions

(DC) [8]. The general form of the DC programming is

as follows:

minimize
x

f0(x) − g0(x)

subject to fi(x) − gi(x) ≤ 0, i = 1, . . . ,M (6)

where fi(x) and gi(x) are smooth convex functions for

i = 1, . . . ,M . A method to solve (6) is to approximate

the concave term with a convex one. We consider an

affine approximation of the concave function (−gi(x)).
Let us consider a point xk in the domain of the problem

in (6) and linearize the concave function around xk and

write the optimization problem (6) as

minimize
x

f0(x)− g0(x
k)−▽g0(x

k)T (x− xk)

subject to fi(x) − gi(x
k)−▽gi(x

k)T (x− xk) ≤ 0,

i = 1, . . . ,M. (7)

The convex problem in (7) can now be efficiently solved.

Denoting the solution of (7) as xk+1, next we go for

further improving the solution by convexifing (6) for

new point xk+1 similar to the procedure performed for

xk. This sequential programming procedure continues

for a number of iterations. The convergence behavior

of the CCCP approach has been thoroughly studied in

the literature, e.g., [8], [12]. Note that if gi(x) is not

differentiable at xk, we can replace the ▽gi(x
k) term

by a subgradient1 of gi(x) at xk.

Now applying the CCCP technique to the problem

in (5), we solve the following optimization problem to

obtain xk+1 from xk:

minimize
x,q

N∑

i=2

qi

subject to ‖x− a1‖2 − hT
i,kx+ bi,k − qi ≤ 0

‖x− ai‖2 − hT
1,kx+ ci,k − qi ≤ 0 (8)

where hi,k = (xk−ai)/d(ai,x
k), bi,k = hT

i,kx
k+zi,1−

d(ai,x
k), and ci,k = hT

1,kx
k−zi,1−d(a1,x

k). The opti-

mization problem in (8), which is called the second order

cone programming (SOCP), can be efficiently solved. We

call the corresponding CCCP as CCCP-SOCP. Note that

the approximations used in this study are different from

other approaches considered in the positioning literature,

e.g., [3], in which convex relaxations, which may not be

sufficiently tight in some scenarios, are used to convert

the MLE into a convex problem. On the other hand,

the DC programming often finds the global solution and

has been considered as an efficient and robust technique

applied to a class of nonconvex problems [14].

In the sequel, we propose another simplification to

the problem in (8). Namely, we replace the feasible set

by an outer linear approximation. The main reason for

dealing with such an approximation is to decrease the

complexity in solving the problem in (8). In particular,

we linearize the nonlinear convex function in (8) and

1Let D be a nonempty set in R
n. A vector g ∈ R

n is a subgradient
of a function f : D → R at x ∈ D if f(y) ≥ f(x)+g

T (y−x) for
all y ∈ D [13].
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express the problem as a linear program (LP)

minimize
x,q

N∑

i=2

qi

subject to gT
i,kx+ zi,1 +mi,k − qi ≤ 0

−gT
i,kx− zi,1 −mi,k − qi ≤ 0 (9)

where gi,k = h1,k − hi,k and mi,k = gT
i,kx

k +

d(ai,x
k) − d(a1,x

k). We call the resulting CCCP as

CCCP-LP.

In the CCCP approach, a solution (not exact) in

every step can be obtained and used for linearizing the

nonlinear terms. We here consider a simple updating

approach based on the subgradient technique for the

problem in (9). To that aim, we express (9) as

minimize
x

‖GT
k x+ bk‖1 (10)

where Gk = [gT
2,k . . .g

T
N,k]

T and bk = [z2,1 +

m2,k . . . zN,1+mN,k]
T . The objective function in (10)

is a nondifferentiable function and we use the following

updating rule for solving the problem:

xk+1 = xk − αkg
k, (11)

where αk is a step size (fixed or time variant) and gk is

a subgradient of ‖GT
k x + bk‖1 in (10). A subgradient

of ‖GT
k x+ bk‖1 at xℓ can be computed as

gk = GT
k sgn(Gkx

ℓ + bk), (12)

with sgn(x) = [sgn(x1), . . . , sgn(xN )]T , where sgn(·)
denotes the signum function. For a discussion on differ-

ent rules for selecting the step size in the subgradient

method, see, e.g., [13]. Note that although the conver-

gence of the modified CCCP problem in (9) is observed

through simulations, the convergence proof needs future

analysis, which is considered as a future work.

IV. NUMERICAL RESULTS

We consider a 80 by 80 square meters area with

a number of reference nodes that are located at fixed

positions a1 = [40 40], a2 = [40 − 40], a3 =
[−40 40], a4 = [−40 − 40], a5 = [40 0], a6 = [0 40],
and a7 = [−40 0] (all in meters). In the simulations,

we pick n reference nodes as a1, . . . , an. One target

node is randomly distributed inside the area. To assess

the proposed technique, we implement the MLE [1]

using Matlab function lsqnonlin [15] initialized with the

true target location (as a benchmark), the SDR [3], the

MLE initialized with the SDR estimate, the linear least

squares (LLS) [5], the linear least squares followed by a

correction technique, and the Cramér-Rao lower bound

(CRLB) [1]. To simulate the RDOA, we first add Gaus-

sian noise to the true distance between the target and
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Fig. 1. The RMSE of different approaches for (a) 4 reference nodes,
(b) 5 reference nodes, and (c) 7 reference nodes.

every reference node and then we subtract the noisy dis-

tance measurements from the first range measurement.

The proposed approaches are implemented by using the

CVX toolbox [16]. For every realization of the network,

we run CVX six times to find an estimate of the target

location. In the simulations, we assume that σi = σ
for i = 1, . . . , N . We initialize the CCCP approaches

with the mean of the locations of the reference nodes.

Fig. 1 illustrates the root-mean-square-error (RMSE) of

different approaches versus the standard deviation of

noise for different numbers of reference nodes. The

figure shows that the proposed approach achieves high
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Fig. 2. The convergence speed of the proposed approaches for random
initializations for N = 4 and σ = 3 m for (a) CCCP-LP and (b)
CCCP-SOCP.

performance compared to the SDR and LLS, especially

for small numbers of reference nodes. As suggested in

[3], we can improve the SDR estimate by employing

a refining approach. From the figure, we observe that

the MLE initialized with the SDR estimate attains the

CRLB. However, such an approach has significantly

higher complexity than the proposed approaches in this

study. The LLS algorithm has the worst performance,

especially for low numbers of reference nodes. As the

number of reference nodes increases, the SDR gets closer

to the proposed estimators. Surprisingly, it is observed

that the performance of the CCCP-LP is very close to

that of the CCCP-SOCP. Fig. 2 shows the convergence

speed of the proposed approaches for a realization of

the network with 4 reference nodes and σ = 3 [m]. For

every estimate generated by the CCCP-SOCP or CCCP-

LP algorithm, we compute the residual ‖r‖1, where r

is given in (4). We randomly choose the initial point x0

and run the CCCP approach for 10 sequential updatings.

For every updating, we need to solve an optimization

problem as described in Section III. In the simulations,

we consider 4 reference nodes. As it can be seen, the

CCCP approach converges very fast, approximately in

three sequential updatings. It is also observed that both

CCCP-SOCP and CCCP-LP have similar convergence

behaviors.

V. CONCLUSION

In this letter, we have proposed computationally effi-

cient suboptimal positioning algorithms based on TDOA

measurements. We have first applied an ℓ1 norm mini-

mization of the residuals and have formulated the prob-

lem as a DC programming. We have then employed a

concave-convex procedure to solve the corresponding

DC problem. Simulation results show that the pro-

posed approaches outperform the existing suboptimal

estimators, in some scenarios, e.g., for low numbers of

reference nodes and when the target is in the convex hull

of the reference nodes.
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