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Bit-Level Soft-Decision Decoding of Triple-Parity
Reed-Solomon Codes through Automorphism
Groups
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Abstract—This paper discusses bit-level soft decoding of triple- Exploiting these automorphism groups and integrating them
parity Reed-Solomon (RS) codes through automorphism permu  with the general-purpose soft decoder (rather than the derd
tation. A new method for identifying the automorphism groups coder in [3]), we further develop a new bit-level soft deculi

of RS binary images is first developed. The new algorithm . . .
runs effectively, and can handle more RS codes and capture algorithm, termegbermutation sum-product algorithm (PSPA),

more automorphism groups than the existing ones. Utilizing for triple-parity RS codes. Simulation demonstrates that o
the automorphism results, a new bit-level soft-decision dmding algorithm can noticeably outperform the existing algarith

algorithm is_subsequently developed for general(n,n — 3,4) such as conventional hard-decision decoding (HOD) [1] and
RS codes. Simulation on(31,28,4) RS codes demonstrates an e soft-decision SPA[6]. The proposed new algorithm istmos
impressive gain of more than 1 dB at the bit error rate of 10 -
over the existing algorithms. efficient for short-length RS codes, and can be extendedto so
decode concatenated or compound codes that use shott-lengt
' triple-parity RS codes as the component code.
The rest of the paper is organized as follows. Section I
introduces the binary image of RS codes. Section Il disgsiss
. INTRODUCTION automorphism groups and details our searching algoritioms f
Reed-Solomon (RS) codes, with their renowned Berlekamfg:,n — 3,4) RS binary images. Section IV presents a new
Massey and Forney algorithms, boast robust error corigctisoft decoding method that effectively combines automaiphi
capability against bit-flip errors such as large amplitude-fl permutations and soft-decision sum product algorithm (SPA
tuation errors and burst errors. However, to fully harnés&t Section V demonstrates simulation results, and Section VI
power on additive white Gaussian noise (AWGN) channet®ncludes the paper.
requires effective soft decoding, which has been a research
focus in recent years (see, for example, [2], [8]). II. BINARY IMAGES OFRS CODES
Some algorithms, such as sorting- and scheduling- based )
message-passing algorithms, are designed for general R&§€tY = [1,72:-- ,¥m] be abasis oFym overFs. Let the
codes [[2], [8]. Not restricting the underlying code speeific €0d€ 1ength bex = 2™ —1. The binary image of a double-
tions, these algorithms achieve generality at the cost afreer Pty (7,7 —2,3) RS codeword: = [co, ¢1, -+, ¢u—1] is @n
high level of computational complexity. In comparison, th& * 7 binary matrix:
algorithms that target specific classes of RS codes canmexplo

Index Terms—Reed Solomon codes, automorphism groups
permutation decoding, binary images, soft decoding.

o 1 . C1,0 C1,1 Cl2 Cl,n—1
specn‘lc_code structures to effectively reduce the complexi Ca0 C21 €22 ccr Cono1
and/or improve the performance. Among the latter type, a Bj(c) := ) ) ) ) ) , (D
notable example is the bit-level automorphism-based dacod ' ' ' ' 3
developed in [[B], which is designed for double-parity RS €m0 Cm1 Cm2 -~ Cmun-1
codes Wordng specily e o horendth COUDI) terec; = 1 + cuys &< e and 0 =
! [Ci70, Ci1,Ci,2,° " 7Ci,n—1] forall j € Z, and1 <i <m.

performance withir).3dB to the maximum likelihood decoder The parity check matrix of thén, n—2, 3) RS binary image

(MLD) at a bit error rate (BER) of0~°. Despite its efficiency, . .
however, this algorithm cannot handle RS codes of more th\é\\,ﬁth zeros{1, a} can be presented byZn x m polynomial

two parity symbols, in part due to its incapability of obtiaig I the ringFy[z]/(z" — 1) [&]

their automorphism groups. I 01(z) 0 e 0 i
This paper studies bit-level soft decoding of triple-paRiS 0 01 () e 0

codes. Motivated by the algorithm in![3], we first investigat : : :

the automorphism groups of the binary images of a general )

(n,n—3,4) RS code, and propose a heuristic search permuta- 0 u 0 u 61 (xl ’

tion algorithm to identify the automorphism groups. Thrbug O ()2 O (2)z"2 Oc (z)a*m

concrete examples, we show that our algorithm works effeg- : : : :

tively, can handle codes that previous algorithms canmat, a i 0. (x)z =t g (x)zv2tmt G (z)aum ] |

find automorphism groups that previous algorithms cannot. (2
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wheree = a1, 6.(z) is known as thédempotent [4], and The parametel(s, (a1, as, - ,a,),l) completely describes

01(x) =1+ x4+ 22 +--- 4+ 2"~ 1. Examples of vectorss = the permutatiorp, such thatli, j] — [o(i), 52! + a,].
(u1,ug, -+ ,uy,) € Z™ are listed in Tablg]I. We present the basic idea of identifying the automorphism
through the following example.
TABLE |
u VECTORS COMPUTED FORy = [vy1,72,"** ;Ym]-
Vectora Primitve Slement: Example 1 [(}5, 12, 4) RS code]Let « _be a fixed primitive
e 21,0 v pe—) element satisfyinga® = o + 1. Consider the(15,12,4)
Foa [2,1,0,14]" aT=a+1 RS binary image with zero§1,«,a?}, imaged under the
Fys | [30,29,28, 27, 26]" o’ =a”+1 canonical basis.
Fos [4,3,2,1,0,62]" oS =a+1

Consider a specific permutatignthat is described by the
parameterss = (1,2)(3,4), (a1,a2,a3,a4) and l. It can
be verified that the permutatiors, (a1,as2,--- ,am),!) and
I1l. AUTOMORPHISMS OFTRIPLE-PARITY RS CODES (0, (a1, az,- - ,am) + a,1) belong to the same automorphism

Previous work has reported all the automorphism groups foroup. Therefore, it is sufficient to fix parametar= 0, then
the (7,4,4) RS code oveify: and part of the automorphismp maps the indices
groups for the(15,12,4) RS code overF,. [3]. Here, we _ . ) .
focus on generaln, n —3,4) RS codes with zeroél, o, a?} [L,j] = [_2’112 I 2, 7] = [173_21 + az] 4)
overFy- for all m > 4. Since,a anda? belong to the same [3,5] = [4,72" +as], [4,5] = [3,52" + a4]
cyclotomic coset, the parity check matrix of,n — 3,4) RS
codes is represented by the followig: x m polynomial
matrix in the ringFs[x]/(z™ — 1).

The parity check matrix of thél5, 12,4) RS binary image is
invariant under the permutation specified[ih (4), if and dfly
the following generator matrix in the rinBy[z]/(x'° — 1) is

) invariant under permutation specified [d (4):

01(x) 0 . 0 ]

0 0 (x) 0 0 O(z)xb2  O(x)zb  O(x)abe
. . O (z)xb 0 O(x)zbs O (x)z2 5
: : : : O(x)zb  O(x)zbse 0 O(x)zbss | (%)
0 0 01 (x) O(z)zb  O(z)zb2  O(z)zbe 0

9(:6)96“51) O(I)x“gl) - H(x):v“gb)
. , where (blg, b1s, b14) = (7, 12, 1), (bgl, bos, b24) = (8, 14, 4),
o o (‘]) (bgl,b32,b34) = (14,0,6), and (b41,b42,b43) = (4,6,7).

O(x)xvr Tm=l g(p)pu2tm=t o G(g)glm TTL Note that permuting(z)z" by j — 2!j is equivalent to

9(17):0“52) H(x)x“f) 9(:0):1:“55) (9(:1:):&)21 = f(z)z"?, since §(z) is an idempotent and

: : : 0(x)? = 6(x). Consider|0, 8(z)z"2, 0(z)xb2, O(x)xb14] from
oo ot gyt | e Errowspace ofll). Applying the permutatof (4, this

(3) [0,0(z)x?2, 0(x)x>3, O(x) 4] —

= [Q(x)IQLbleraz ,0, 9(:17)x21514+a47 9(I)x21b13+a3].
Eermutation p belong to the code automor-
fiism group if the following two  vector

where 6(z) is short for 6.(z). The vectors u®
[ugl), uél), e ,uﬁ,i)] and u® = [u§2), ug2), e ,uS?J]e Fm
can be computed using the method introduced_in [3], and t

results are listed in Tablelll.

[0(x)a2 br2taz 0 §(z)z2 bratas g(g)g? bratas] and
TABLE i [0(z)xb21,0,0(x)xb22, 0(x)xb24] are generated from the
Common vecTorsul!) AND u(®) FOR(n,n — 3,4) RSCODES same basis vector. This leads to the following equation
&) @)
Fys V?;}cl)l:(l)l]T V?;}gl:?]T Al = mod (2lb12 +as — bo(l),a(2)a n)
Fo 2,1,0,14]" 2,9, L8] Ag = mod (2'b13 + a3 — be(1),0(3), 1) 6)
Fos [30, 29, 28, 27, 26]" [30, 14, 29, 13, 28]" Az =mod (2'b14 + as — by(1),0(4): 1)
Fo6 [4,3,2,1,0,62]" [4,35,3,34,2,33]" AL = Ay = Ay
For [6,5,4,3,2,1,0]7 (6,69, 5, 68,4,67,3]7
T T
e (TS s LIS T LD 200 LT Loty = 8, = A, hena, = mod (3,000 ~ 2 )
29 505, 504, 503, 502] T 252,507, 251, 506] T It can be seen that wheh= 0, we obtain(az,as3,a4) =
Fore [6,5,4,3,2,1,0, [6,517, 5,516, 4, 515, (12,3,9). To verify p belong to the code automorphism group,
2 1022, 1021, 1020] 3,514,2,513]" we considerf(z)z%*", 0, 0(z)z" ", §(z)2+7] from the Fa-
rowspace of[(5). The permutationl (4) gives rise to
Define the symmetric grouponthe §et2,--- ,m} asQ,,. [0(x)2®T",0,0(x)2***", 0(z)z*t"] —
A permutations € Q,, is represented using the cycle notation [0,0(x)x®T 0(z) 237, 0(x)2? 1]

(e.g., the permutation = (1,2,4) meanss(1) = 2, 0(2) =4, which again lies in thé&,-rowspace of((5). Thus; belongs to
ando(4) = 1). Let id denote the identity permutation on  the automorphism group of the@5,12,4) RS binary images
indices{1,2,---,m}. Letay,azs, -+ ,am € Z, andl € Z,,. generated by the matrix ifl(3). O



To find the other permutations of a genefaln — 3,4) RS under permutatiomn:
coc_zle, we propose an ef_fectlve search permutation algorithm 0 ()2 O(2)a'2 0(z) 0(z)
which is the generalization of the above example. Note that 29 5 11 14
: o C 0(z)x 0 O(x)x>  O(x)z''t O(z)x
there exists a set of constar{ts; ; : 1 <i,5 <m, i # j} in ()t O(x)?? 0 o(2)z°  6()
Z.,, whereby the rows of the following: x m matrix M: 0 02 0(x)2? 0 0(z)2>

O(x)x®®  O(x)2®  O(x)x'? O(x)x*! 0

0 , 0(x)a™> 9(55)352“” Applying the proposed search algorithm leads to Table V.
M = 0(x)> 0 O(z)x"=m We identify a total of124 unique code automorphism3s of
" : : : which mapli, j] — [i, 7 + a] for all a € Z3;. O
LA TABLE IV

o . . / AUTOMORPHISMS OF(31, 28,4) RSCODE WITH ZEROS{1, ar, a? }.
lie in the Fo-rowspace of[(B). Specificallyil(5) in the previous

subsection is but a particular case [of (7) with= 4 and was g (a1, 02,03, a4,05) | |
i ) _ : id (0,0,0,0,0) + a 0
reported in [[3]. The proposed search algorithm is described T.2)4,5) | (0,15,23,29,17) +a | 0
below and has a complexit@(m!n?m). (1,4)(2,5) | (0,29,9,18,20) +a | O
(1,5)(2,4) | (0,17,3,20,6) +a | O
Heuristic permutation search algorithm
Input: Polynomial matrixM in (). Example 3: [General (n,n — 3,4) RS codes]The number
Output: The automorphism group'. of all the automorphism groups found via the proposed algo-
1. forall o € Q.,, as,a3 € Z,, andl € Z,, rithm is listed in TabléV, for severdln,n — 3,4) RS codes.
Ay =mod (2'b12 + az — bo(1),0(2)> M) We also present the code automorphism orders computed using
2. Compute . L .
Ay =mod (2'b13 + a3 — by(1),0(3), 1) MAGMA software. Compared to the existing algorithms,
3. I Ay=Ay, thena; = mod (A1 +bo(1),0(i) — 2'b1;, n)  our algorithm finds significantly more automorphisms than
where3 < i < m; otherwisecontinue. the method in[[B]; It produces results consistent with those
4. Construct a permutation= (o, (0,az,- -+ ,am),). obtained from the MAGMA computation in J[§] but can
5. If M is invariant undep, then storep in P. handle fields of larger orders (el,s) where MAGMA would
6. end face difficulty. O
TABLE V

Example 1 cont'd: [(15,12,4) RS code]Table[lll presents AUTOMORPHISM SUBGROUP ORDERS Ofn, n — 3,4) RSCODES OVER
all the permutations of thél5, 12,4) RS binary images with ~ FINITE FIELD Fom OBTAINED BY THE PROPOSED SEARCH ALGORITHM
. P . N.A. SNO
zeros{l,a,aQ}, obtained by the proposed algorithm. We ( MEANS NOT AVAILABLE)

report a total of120 unique code automorphismgj of — Pr‘iggsed MAGI';'OA (Bl | Lim ?8a"[3j
which map|[i,j] — [i,7 + a] for all a € Z;5. In general, ]F; 91 21 NA
it appears that the permutation= (o, (a1,a2,-- -, am),0), Foe 126 126 N.A
where ¢ = (1,n)(2,n — 1)--- and (aj,az, -+ ,ay,) = For | 254 254 N.A
m—1 1 m1 Fos 510 N.A N.A
(0,(2 +1),3,(2 +1)+3,6,(2 +1)+6 )4a
belongs to the automorphism group of the n — 3,4) RS
binary images for alin anda € Z,. O IV. SOFTDECODING OF(n,n — 3,4) RS CODES
The availability of a list of the permutation groups allows
TABLE Il us to develop more effective soft decoders for triple-peR6
AUTOMORPHISMS OF(15, 12, 4) RSCODE WITH ZEROS{1, o, a? }. codes. The proposed ngwermutation sum-product algorithm,
= (a1, a2,a3,a2) | 1 illustrated in Fig[dl, takes advantage of the rich permatati
id (0,0,0,00+a | O groups obtained in Sectidnllll and the soft decision outgut o
(1,2)(3,4) | (0,12,3.9)+a [0 the classical (binary) sum-product algorithm.
1,3)(2,4) | (0,3,6,3)+a |0
1,4)2,3) | (0,9,3,12)+a |0
2,4) 0,3,9,3) fa | 2 @
(4,3,2,1) | (0,0,12,12) +a | 2 Received | (1) [ Sum-Product ® :::r“x:::;:
(17 3) (07 6,0, 6) +a 2 codeword ¥ decoder v, =p(y)
(1,2,3,4) | (0,12,12,0) f a | 2 N
SEDWAIP] (O]
v
Example 2: [(31,28,4) RS code]Consider the(31,28, 4) Corrected | . (©) [ Hard decision
RS binary image with zero#l,a,oﬂ}, where o is a fixed codeword § [€ |  decoder

primitive element satisfyingr> = o2 + 1, imaged under the
canonical basis. The parity check matrix of this binary imag
is invariant under permutatiop, if and only if the following
polynomial matrix in the ringFs[z]/(x3! — 1) is invariant  Note that two groups of the same order do not imply the same.

Fig. 1.  Permutation sum-product algorithm fon,n — 3,4) RS binary
mages.



Permutation sum-product algorithm (PSPA) 108
Nput: Observationy %

Output: corrected codeword. E ---------------------
1. Representy as a binary image. Decodg using the :.;
conventional sum-product algorithm (SPA). S 104
2. If the SPA produces a valid codewargthen stop; otherwise E O Uncoded BPSK
store the log-likelihood; _ _ u -8 Conventional HDO
3. Generate a random permutatigny, = p(y) (e.g. using @ |l -o-SPA decoder
the proposed search algorithm). 1077 -~ PSPA (proposed)
4. Repeat step 1 until all the permutations are exhausted or a 5 55 6 6.5 7 G
maximum number of trials is reached. Signal to Noise Ratio (SNR)
5. Compute the sumy,u, =y + 35 p~ ' (¥,)- Fig. 2. BER performance fof31,28,4) RS code over AWGN channels.
6. Perform hard decision op,,,,, and outputs the result.
Remark: It should be noted that our decoding algorithm
differs from that proposed in_[7]. The algorithm ial[7] is =
restricted to binary cyclic codes over binary erasure chenn 4
Our problem here involves the general permutations of bit- E
level RS codes over AWGN channels, and the cyclic codes in &
[7_] may be wewgd a’s a spemql case of ours. Our decoder also S 15°%[-0 Uncoded BPSK
differs from that in [3]. To achieve its desirable perforroan w -B- Conventional HDO
the decoder in [3] must be able to find a “perfect” permutation @ -9~ SPA decoder
that gathers all of the bit errors in one symbol, and then deco _g| >~ PSPA (proposed) | ‘ ‘
this permutation using sonteard-decision decoder. Not only 10 6 6.5 7 7.5 8 8.5
is such a perfect permutation very difficult to identify, e Signal to Noise Ratio (SNR)

decoder performance would also degrade very quickly shoulg. 3. BER performance fof63, 60,4) RS code over ANGN channels.

a perfect permutation become unavailable. In comparisan, o

PSPA method obviates the burden of identifying a perfect per

mutation, simply takes in random permutations, and explofearch algorithm to identify automorphism groups of a gainer

the power of thesoft-decision SPA to effectively correct bit (7,7 —3,4) RS code with zero§1, o, o*}, and next devel-
errors. oped a soft-decoding algorithm that integrates automerphi

permutation and the conventional soft-decision sum proaluc

) ) ] ) gorithm. Simulations confirm the effectiveness of the pegzb
Simulations are conducted to verify the effectiveness gfrmytation sum-product algorithm, revealing an impressive

the proposed decoding algorithm. The triple-pa(&y, 28,4)  performance of more than 1 dB at the BERIOF® than the
and (63,60,4) RS codes oveffys and Fys are considered. eyisting algorithms. Our algorithm is particularly suikatior

We compare our proposed soft-decision PSPA algorithm wigport-length triple-parity RS codes, or concatenated ode
three other systems: the uncoded system, the RS code Wiiich they are a component code.

the conventional hard-decision decoding (HDD) implenTanti

the Berlekamp-Massey algorithrnl [1], and the RS code with ACKNOWLEDGEMENT
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