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Conditional Entropy based User Selection for
Multiuser MIMO Systems
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Abstract—We consider the problem of user subset selection
for maximizing the sum rate of downlink multi-user MIMO
systems. The brute-force search for the optimal user set becomes
impractical as the total number of users in a cell increase. We
propose a user selection algorithm based on conditional differ-
ential entropy. We apply the proposed algorithm on Block di-
agonalization scheme. Simulation results show that the proposed
conditional entropy based algorithm offers better alternatives
than the existing user selection algorithms. Furthermore,in terms
of sum rate, the solution obtained by the proposed algorithm
turns out to be close to the optimal solution with significantly
lower computational complexity than brute-force search.

Index Terms—Mutual Information, multiple-input multiple-
output (MIMO), multiuser, downlink, sum rate.

I. I NTRODUCTION

I N Multiuser MIMO (MU-MIMO) systems the base station
broadcasts to multiple users simultaneously with differ-

ent data for different users, which gives rise to inter-user
interference. Given the complexity of optimal Dirty Paper
Coding (DPC), several linear suboptimal techniques such as
Zero-Forcing Beamforming (ZFBF), Block Diagonalization
(BD) [1], [2] etc. have been proposed to cancel inter-user
interference. ZFBF uses weight vectors which are chosen to
cancel the interference among user streams. On the other hand,
BD exploits the null space of channel space of the other users’
using Singular Value Decomposition (SVD). The data meant to
be transmitted to a particular user is multiplied by a precoding
matrix which lies in the null space of channel spaces of other
users being served simultaneously. Due to rank and nullity
constraints the number of users which can be simultaneously
supported are limited by the number of transmit and receive
antennas. This leads to the problem of selecting the subset of
users which can maximize the sum rate, which we refer to
as the optimal subset of users. In a system where the number
of users is large, the brute-force determination of the optimal
subset of users is prohibitive because of the large number of
possible subsets and high computational complexity of SVD.
To reduce the computation load many suboptimal algorithms
have been proposed [3]–[5].

The authors of [3] proposed two suboptimal algorithms: c-
algorithm and n-algorithm. At each step the c-algorithm selects
the user which maximizes the sum rate while the n-algorithm
selects the user which maximizes the channel frobenius norm.
Their performance is close to optimal but their computational
complexity is large as c-algorithm involves large number of
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SVD computations while n-algorithm involves heavy Gram-
Schmidt Orthogonalization (GSO) computations. The authors
of [5] proposed an algorithm based on chordal distance which
is a measure of orthogonality between channel spaces.

In this paper, we propose a conditional entropy based
user selection algorithm. The algorithm uses sum conditional
differential entropy as a measure to select users iteratively
until the maximum number of simultaneously supportable
users are selected. The rest of this paper is organized as
follows. Section II introduces the system model and SectionIII
discusses the application of conditional differential entropy in
a MU-MIMO setting. The proposed algorithm is described in
Section IV. Section V presents the simulation results. Finally
the conclusions are given in Section VI.

II. SYSTEM MODEL

In the considered MU-MIMO system the data stream after
precoding is sent to M transmit antennas, resulting in aM×1
transmit vector. The channel is assumed to be slowly flat-
fading. It is assumed that there is perfect Channel State Infor-
mation at the Receiver (CSIR), and BS knows the channels of
all the users perfectly i.e. there is Channel State Information
at the Transmitter (CSIT). We assumeKT users each withN
receive antennas. Thus

yk = Hkx+ nk, k = 1, .....,KT (1)

whereHk (k = 1, ...,KT ) is the N × M channel matrix
for the kth user, the entries of which are independently
and identically distributed (i.i.d.) circular symmetric complex
Gaussian random variables with zero mean and unit variance.
Further,nk is theN × 1 complex Additive White Gaussian
Noise (AWGN) vector with zero mean and unit variance i.i.d.
entries, andyk is theN × 1 vector received by thekth user.
The transmitted vectorx of sizeM × 1, is given by

x =

K
∑

i=1

Tisi (2)

whereK is the number of simultaneous users served by the
BS, si is theL× 1 data vector for theith user, preprocessed
with M ×L precoding matrixTi. The received signal for the
kth user in (1) can be split into desired signal, interference
from other users and AWGN originating at receiver, which is
given by

yk = HkTksk +

K
∑

i=1,i6=k

HkTisi + nk (3)
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The problem of optimal user set selection on the basis of
maximization of sum rate can be written as

Ropt = max
S⊂Γ,|S|≤K

R (S) (4)

whereΓ = {1, ...,KT}, R (S) is the sum rate of user set
S, |S| denotes cardinality ofS, K is the maximum number
of simultaneously supportable users by the considered MU-
MIMO scheme andRopt is the maximum possible sum rate.
From (4), we can see that the optimal scheduling algorithm
selects a subset over all possible subsets of users subject to a
cardinality constraint.

The only known way to obtain the optimal solution is by
performing brute-force search over all possible user subsets.

III. SUM CONDITIONAL DIFFERENTIAL ENTROPY

In this section we derive equations which will help in
formulating the conditional entropy based algorithm later.

Let us consider an user MU-MIMO system

yk = Hkx+ nk, k = 1, ..., n (5)

for which the information rate of thekth userI (yk;x) will be
maximum when the differential entropyH (yk) is maximum.
With E[xxH ] = Q and power constraintE[xHx] ≤ P , the
distribution which maximizesH (yk) is circular symmetric
complex Gaussian [6] and the differential entropy is given by

H(yk) = log2det
(

πe
(

HkQHH
k + IN

))

(6)

Now considerỹ = [yH
1 ,y

H
2 , · · · ,y

H
n ]H , ỹ will also be a

circular symmetric complex Gaussian random variable with
zero mean andE[ỹỹH ] = Σ, such thatΣ = [Σij ] where

Σij = E[yiy
H
j ] =

{

HiQHH
i + IN if i = j

HiQHH
j if i 6= j

(7)

The joint differential entropy ofyk ’s will be H(ỹ) =
log2det(πeΣ) and can be written as

H(ỹ) = log2
(

(πe)nN×

det
(

IM +QHH
1 H1 + · · ·+QHH

n Hn

))

(8)

where (8) has been written using matrix determinant identity

det(IM +AB) = det(IN +BA) (9)

whereA andB areM×N andN×M matrices, respectively.
The conditional differential entropy ofyk is given by

H (yk|ỹk) = H (ỹ)−H (ỹk) (10)

where ỹk = [yH
1 , · · · ,y

H
k−1,y

H
k+1, · · · ,y

H
n ]H . Sum condi-

tional differential entropy ofn random variables is defined
as the sum of conditional differential entropy of each random
variable with the othern− 1 random variables. From (10) we
can now write the sum conditional differential entropy of the
users inS = {1, 2, ..., n} as

HSC (S) =
∑

k∈S

H (yk|ỹk) (11)

IV. CONDITIONAL ENTROPY BASEDUSERSELECTION

ALGORITHM

Precoding schemes for interference cancellation, for e.g.BD
[3], remove the common subspace between the channels of
the selected users and hence entropy of thekth user’s signal
with effective channelHkTk reduces. Therefore, for sum rate
maximization we should attempt to select the users with not
only maximum differential entropy but also with minimum
common subspace. We know that as the channels’ space tend
to be orthogonal lesser is the subspace common to them.
Hence we will bring in consideration of orthogonality.

A user selection algorithm using capacity upperbound as
selection metric was proposed in [4]. It can be seen from (8)
that capacity upperbound is identical to the joint differential
entropy of selected usersS and new usert. Thus, the for-
mulation in [4] seeks to maximize only the joint differential
entropy and does not take orthogonality into account. Hence
there is a possibility of sum rate improvement if we bring in
consideration of orthogonality. We will show that the mutual
information can serve this purpose.

Let us consider a MU-MIMO system (5) withn = 2. Then
I (y1;y2) can be written as

I (y1;y2) = H (y1) +H (y2)−H (y1;y2)

= log2det
(

I+QHH
1 H1QHH

2 H2×

(

IM +QHH
1 H1 +QHH

2 H2

)−1
)

(12)

whereH (y1;y2) is the joint differential entropy ofy1 and
y2 written using (8) and the optimal value ofQ is determined
by BC-capacity region [7]. However, in order to bring in the
consideration of orthogonality we will substituteQ = P

M
I, so

thatH1H
H
2 can appear in (12). Hence

I (y1;y2) = log2det
(

I+ (P/M)
2
HH

1 H1H
H
2 H2×

(

IM + P/MHH
1 H1 + P/MHH

2 H2

)−1
)

(13)

andI (y1;y2) = 0 whenever the row spaces ofH1 andH2

will be orthogonal i.e.H1H
H
2 = 0. In other words, mutual

information between orthogonal users is zero. Therefore, lesser
the mutual information, closer to orthogonality will be the
users’ channel. Now, to select two users fromΓ, s1 will be
the user with maximum differential entropy. For selecting user
s2 from t ∈ Γ − {s1} we have to maximizeH (yt;ys1) and
minimizeI (yt;ys1 ), which can be performed if we maximize
H (yt;ys1 )− I (yt;ys1 ). Therefore

s2 = arg max
t∈Γ−{s1}

{H (yt;ys1 )− I (yt;ys1 )}

= arg max
t∈Γ−{s1}

{H (yt|ys1 ) +H (ys1)−

(H (ys1)−H (ys1 |yt))}

= arg max
t∈Γ−{s1}

{H (yt|ys1 ) +H (ys1 |yt)} (14)

From (14) we can see thats2 is indeed the user with
maximum sum conditional entropy (11) givens1. Thus sum
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conditional entropy implicitly includes orthogonality con-
straint, hence can be expected to give better performance than
upperbound metric.

Using the above formulation, we will generalize the al-
gorithm to the selection of more than two users. LetS =
{s1, ..., sk} be the selected users afterkth user selection step.
At (k+1)th step,sk+1 will be the usert /∈ S which maximizes
sum conditional differential entropy of the users inS and the
usert i.e. HSC(S + {t}) in (11). Therefore

sk+1 = arg max
t∈Γ−S

HSC(S + {t})

= arg max
t∈Γ−S

log2

det

(

IN +Ht

(

M

P
IM +H(S)HH(S)

)−1

HH
t

)

+

k
∑

i=1

log2det

(

IN +Hsi

(

M

P
IM +H(Si)

HH(Si)

)−1

HH
si

)

(15)

whereSi = S + {t} − {si}. The kN ×M channel matrices
H (S) andH (Si) are constructed by vertically aligning the
channel matrices of the users inS andSi, respectively. The
expression forHSC(S + {t}) in (15) is written using (8), (9)
and (10) after dropping the constant term involving(πe).

For this a series of matrix inversions are to be computed
at each user selection step. This can be done through matrix
inversion lemma or woodbury formula [8]. WithA anM×N
positive definite matrix andB anN ×M matrix,

(

A+BHB
)−1

= A−1−A−1BH
(

IN +BA−1BH
)−1

BA−1

(16)
Now we will derive recursion for the first term [4] of (15)

and the same arguments will be applied for the terms inside
the summation in the same equation. Let us defineΩk by

Ωk =

(

M

P
IM +H(S)HH(S)

)−1

(17)

We can write the effective channel at the(k + 1)th step as

Heff =
[

H(S)H HH
t

]H
(18)

We now update (17) by replacingH(S) with Heff from (18)
to obtainΩk+1 as

Ωk+1 =
(

Ω−1

k +HH
t Ht

)−1
(19)

On substitutingA for Ω−1

k and B for Ht in (16), the
recursion is given by

Ωk+1 = Ωk −ΩkH
H
t

(

IN +HtΩkH
H
t

)−1
HtΩk (20)

In Step 1, the algorithm is initialized while in Step2,
the algorithm first selects the user with maximum differential
entropy and then successively selects the user which maxi-
mizes the sum conditional entropy till the maximum number
of simultaneously supportable users limitK is reached. The

proposed algorithm is general in nature and is applicable toany
scheme for whichR (S) can be calculated. Thus, when applied
to different schemes, only the step involvingR (Stemp) will
be different. In this paperR (Stemp) is calculated using [3].

1) Initialization,Γ = {1, 2, ...,KT} ,S = ∅. Let Ω = P
M
IM ,

Ωn = Ω. Let Ruse = 0;

2) for i = 1 : K
for j = 1 : i− 1

For eachk ∈ Γ, compute
Ωsj ,k = Ωsj −ΩsjH

H
k

(

IN +HkΩsjH
H
k

)−1
HkΩsj ;

end-for
p = argmax

k∈Γ
{log2det

(

IN +HkΩnH
H
k

)

+
∑

s∈S

log2det
(

IN +HsΩs,kH
H
s

)

};

R = R (Stemp) ;Stemp = S + {p};
if R < Ruse

break;
else
S = Stemp; Γ = Γ− {p};Ruse = R;

end-if
Ωsi = Ωn ;
Ωn = Ωn −ΩnH

H
p

(

IN +HpΩnH
H
p

)−1
HpΩn;

end-for

The matrix inversion lemma (16) is known to be numerically
unstable when a large number of recursions are performed,
for e.g. in adaptive filtering. However in our algorithm the
recursions to update theΩk are being done for a maximum
of K times. SinceK is small and does not increase withKT ,
numerical stability of the matrix inversion lemma is not an
issue.

The flop count of the algorithm is as follows: For computing
the positive definite matrixIN+HkΩHH

k , its determinant and
inverse using Cholesky decomposition the flops required are
8M2N+8MN2+N , 4

3
N3− 3

2
N2+ 13

6
N [4] and4N3− 1

2
N2−

3

2
N [9] respectively. Hence to updateΩ in (20), flops required

areψΩ = 32M2N+16MN2+2M2+N+4N3− 1

2
N2− 3

2
N .

Therefore, the total flops of the algorithm is

ψCE ≈
K
∑

i=1

{

ψΩ × (i− 1) + [ 4
3
N3 − 3

2
N2 + 19

6
N

+ 8M2N + 8MN2]× i
}

× (KT − i+ 1)

+K × ψΩ

≈ O
(

KTKM
3
)

(21)

V. SIMULATION RESULTS

In this section, we provide the sum rate and flop count
results for the proposed conditional entropy based user selec-
tion algorithm when applied to BD scheme. We compare the
sum rate achieved by the proposed algorithm with the optimal
solution and the existing algorithms namely, c-algorithm,
n-algorithm, upperbound based algorithm, chordal distance
based algorithm and row-norm based algorithm [10].

In Fig. 1 and Fig. 2, we compare the sum rate versus the
total number of users(KT ) for (M,N) = (8, 2), i.e.K = 4,
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Fig. 1. Sum rate versus total number of users whenM = 8, N = 2, K = 4

for SNR= 20 dB.
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Fig. 2. Sum rate versus total number of users whenM = 8, N = 2, K = 4

for SNR= 10 dB.

at SNR = 20 dB and 10 dB respectively. We can see that
the sum rate of conditional entropy based algorithm is strictly
better than n-algorithm, row-norm based algorithm, upper-
bound based algorithm and chordal distance based algorithm.
Moreover, we can observe that the plots of c-algorithm and
conditional entropy based algorithm are overlapping1 and
achieve approximately95% sum rate of the optimal solution.

In Fig. 3 we show the total number of flops versusKT

of all these algorithms for(M,N) = (8, 2). It can be
observed that the c-algorithm has highest flop count. Further,
it should be noted that even though the sum rate plots of
the c-algorithm and the conditional entropy based algorithm
overlap, flop count of the conditional entropy based algorithm
is significantly lower. It may be noted that the chordal distance
based algorithm and upperbound based algorithm have a lower
flop count but it comes at the cost of their lower sum rate as

1This is why only six curves are visible even though seven curves have
been plotted.
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Fig. 3. Number of flops versus total number of users whenM = 8, N =

2,K = 4

observed in Fig. 1 and Fig. 2.

VI. CONCLUSION

Although we have shown the conditional entropy based
algorithm only for BD scheme, the algorithm is potentially ap-
plicable to any other MU-MIMO scheme like Successive Zero-
forcing [11]. The simulation results show that the proposed
algorithm achieves higher sum rate and/or lower complexity
than the existing algorithms. Also, the sum rate obtained by
the proposed algorithm is close to that achieved by brute-
force search based optimal algorithm, with significantly lower
complexity.
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