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Abstract—In this letter we study the design of algorithms for Il. SYSTEM MODEL
estimation of phase noise (PN) with colored noise sources. $bft- . L
input maximum a posteriori PN estimator and a modified soft- Consider the transmission of a blockigfdata symbols over

input extended Kalman smoother are proposed. The performace  an additive white Gaussian noise (AWGN) channel, affected
of the proposed algorithms are compared against those stued by random PN. The channel coefficient from the transmitter to
in the literature, in terms of mean square error of PN estimaion, receiver antenna is assumed to be constant over the tra@smit

and symbol error rate of the considered communication systa. o . .
The comparisons show that considerable performance gains P1OCK, and it is estimated and compensated by employing a

can be achieved by designing estimators that employ correct known training sequence that is transmitted prior to thedat
knowledge of the PN statistics. symbols[[2]. In the case of perfect timing synchronizatitue,

received signal after sampling the output of matched filtar ¢
be modeled as i [1]

yk:Skej0k+wk7 ke{laaK}a (1)

OSClLLATQR_PHASE NOISE (PN) results in challengingyhere g, represents the PN affecting tfi¢h received signal
synchronization issues which degrade the performancefe to noisy transmitter and receiver local oscillators an
communication system5sl[1]./[2]. Demands for high data ratgs  realization of the independent and identically distiéil
motivate the use of high-order modulation schemes in SUGh.d.) zero-mean complex circularly symmetric AWGN with
systems. Nevertheless, PN severely limits the performahceariances?. In this model,y = {y}/, is the sequence of
systems that employ dense constellations. received signals and = {s;}/, is the transmitted symbol
The problem of PN estimation has been widely studiesbquence divided in two sets of symbols, known pilot
during the last decades (se€ [1]] [3]) [4] and the referencggmbols, andk — K, unknown data symbols. We model the
therein). In[[4], a feedforward PN estimation-symbol d&@t pilot and data symbols in general as
algorithm is presented, while iterative methods for joihape 5. = 3 4 ¢ )
estimation and symbol detection are studied_in [1]. K Bk
In prior studies, PN is modeled as a discrete random walkheres,, is the soft detected symbol amgl models the uncer-
with uncorrelated (white) Gaussian increments betweeh eaainty of s; as an i.i.d zero-mean circularly symmetric AWGN
time instant (i.e., the discrete Wiener process). This rhodgith varianceo—fk. Such a modeling choice is commonly used
results from using oscillators with white noise sources [Sin the literature [[8]. For the pilot symbols;?, = 0 since
However, numerous studies show that real oscillators algwey are known. Usind 1) anfll(2), the received signal can be
contain colored noise sources, and PN is accurately modsledewritten as
a random walk with correlated (colored) Gaussian incresent yr = 81e% + eed® oy, ke {l,... K}, 3
5117 —
In this letter, we propose techniques to estimate PN from e
real oscillators with white and colored noise sources, invahere w; is the new observation noise. As is modeled
single antenna-single carrier communication system. Véé ficircularly symmetricqy, ~ CN (0,02 £ 02 + o?k)l
derive a general soft-input maximum a posteriori (MAP) The PN samples are modeled by a random-walk as
PN estimator that is optimal in terms of the mean square O = 01 + Co_r1, ()
error (MSE). Then, a modified soft-input extended Kalman
smoother is proposed that can be used for estimation of RMere the phase increment procésss a zero-mean Gaussian
with colored increments. The proposed Kalman smootherrisndom process. Recent studies of the PN in oscillators with
observed to perform close to the MAP estimator in severeblored noise sources show that the PN increments can be
interesting scenarios, with a significantly reduced coxiple correlated over timé]5]=[7]. Hence, we consider a genexséc
Further, we compare the proposed methods with state of thewahere the autocorrelation function ¢f, denoted as. (1), is
techniques. The proposed estimators jointly estimate the Rnown a priori. Note that the Wiener PN model extensively
samples of a block of received signals, which improves thised in the literature is a special case of the proposed model
estimation performance compared to sequential PN estimativith uncorrelated (white) phase incremerits [5].
algorithms previously studied (e.gl.| [3]). Our estimatoas
be used in feedforward or iterative designs for the estionati Notations: Italic letters (x) are scalar variables, boldface lettdts) are

of PN with white and colored increments. vectors, uppercase boldface lettgiX) are matrices([X], ;) denotes the
(a, b)*" entry of matrixX, diag(X) denotes the diagonal elements of matrix
(X), E[-] denotes the statistical expectation operat@n,(z; i, 02) denotes
The authors are with the Department of Signals and Systermalnters the complex proper Gaussian distribution with variable mean z, and
University of Technology, Gothenburg, Sweden. M. Reza Khdnis also varianceo?, log(-) denotes the natural logarithriR{-}, 3{-}, andarg{-}
with the Department of Microtechnology and Nanoscienceal@brs Univer- are the real part, imaginary part, and angle of complexediloumbers, and
sity of Technology. Email{khanzadi, rajet, thomaj@chalmers.se. (-)* and ()T denote the conjugate and transpose, respectively.
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[1l. PHASE NOISE ESTIMATION In order to solveg(0) = 0, which is a non-linear system of

In the sequel, we propose two methods for joint estimatigifiuations, we use the Newton-Raphson method whdse
of K-dimensional PN vecto = {0, }X_,, that further would itération is given by
be used for data detection. First, we derive a MAP estimator. é("“) ;) )g(é
Thereafter, we propose an approach for modification[bf (4)

such that smoothing algorithms (e.g., Kalman smoothe) withere H(9) denotes the Hessian matrix,
a lower complexity than MAP can be used for estimation. $¥e—i0k 1y K
plextty H() £ _<z diag ([{M} D + c—l) . (13)

(n) (n) (n)

~-H (6 ), (12)

2
O} k=1

A. Proposed MAP Estimator . , )
o We iterate till an accurate value of the root is reached.

L(_at f(8ly) denote t_he a posteriori d|str|but|c_)n of PN VECtor 14 show that this algorithm reaches a global maximum, we
9, given the observation vectgr. The MAP estimator 08 is st hrove that(8) is a concave function in moderate and high
determined as signal to noise ratio (SNR) regimes. [0{18); ! is the inverse

6 = aremax log( £(0lv)) = are max lo 0)(0 5) of a covariance matrix, thus it is a positive-definite matifx
ge B/ (6ly)) ge s(f(v16)7(6)). () the first term of the sum if(13) is also positive-definite (or

where we definef(8) 2 log(f(y|8)f(8)). To solve this positive-semidefinite), the Hessian becomes negativeritifi

optimization, we first need to find the likelihood(y|6), and :hus |r?ply|n% trgaté(e) 'tl's a con.ga\f/.e .{””C“?P'_f;f the f'trSt

prior distribution of@, f(0). As bothw, ande¢, are i.i.d, and berm 0 [B)ho € posl |}/e-sem| € 'n'lﬁ’.{.ykske 3} mus

yr only depends ofl;, according to[(B), the likelihood function e greater than or eﬁ“a 0 ze2ro. Exploiting Eg. (3) we get

can be written as Riyrsre ™} = 36" + R{35mr} = 0, (14)

K K wherew;, £ e~ 7%, with the same statistics a&,. It is clear
fy10) =TT fwrl0) = T £ (wklow), (6) that for moderate and high SNF,_{14) is satisfied with a high
k=1 k=1 probability, and consequent(8) is a concave function.
where In the low-SNR regime/(0) is not necessarily concave.
F(yrl6r) = CN (yi; 3%, 02) Therefore, we propose an approach to initiate the iteration
1 lyse — 1?2 with a guess which is fairly close to the optimal point. This
= ——exp (—72) (7) ensures that the method does not get trapped in a local
Tk Tk maxima, far from the global maximum. Moreover, employing
In order to find the prior distributiorf(8) of the PN vector, agood initial guess speeds up the convergence of the dgorit
we use the random walk model il (4) that results in a genefdl any SNR. In this respect, we first find the maximum
PN incremental form of likelihood (ML) estimate of the PN samples for the pilot

k—1 . . .
0, — 0 + ., 8 symbols. For anys;, in the pilot set, the ML estimator of
P ;C ® the kth PN sample can be computed @8 = arg{ys;}.

whered; (PN of the first symbol in the block) is modeled agd "en. we form our initial estimate of the PN vectér, ", as

a zero-mean Gaussian random variable with a high vaflanci€ linear interpolation of the ML estimated PN values.
denoted ass? . Based on[{8), we can show thét has a The MAP estimator is an optimal minimum mean square
multivariate é]aussian distributiofi(8) = A/(6;0, C) where estimator if its MSE attains the Bayesian Cramér-Rao bound

elements of the covariance mat@ can be computed as  (BCRB) [9]. In the Appendix, we analytically derive the MSE
of the MAP, and show that it is approximately equal to the
[Cli.m = ]E|:(9m —E[0m]) (0 — E[0nr]) (9) BCRB of the PN estimation. Our simulation results in Sec. IV
’ also confirms this (Fid12).
Although, the proposed MAP estimator gives an optimal
=05, + >, Y R(l—=1), mm' e{l,....K}. estimate o9, as we can see il_(112), it involves inversion of
=1 I'=1 K x K matrices that may raise some complexity issues. In
From [7) and the multivariate Gaussian prioréfve obtain the next section, we propose an approach to modify the PN
K model and reduce the complexity.
0(6) = Z %%{ykéze*jek} — l(gTCflg) + const. (10) B. Auto Regressive Model of Colored Phase Noise Increments
=1 Ok 2 In general, the PN increment process can be modeled with
To find the maximizer ofi(10), an exhaustive grid-search ov8th-order auto regressive (AR) process as follows

m—1m'—1

all possible values off can be used. However, the complexity P
of this method increases exponentially with the length9of G =Y ihi+ Ay, (15)
The stationary point of this optimization can analyticaltlg i=1

found as the root of the gradient 6(0) with respect tod,  where o; are the coefficients of the AR model anhj, is
S{ypére I} K 4T modeled as a zero-mean white noise process with variance
g(0) = 2[{’“72} } —~C'6=0. (11) oX%. For a given autocorrelatiofk:(I) and AR orderp, the
Tk k=1 optimal; ando? can be computed using algorithms such as
1 . . . . - the Levinson-Durbin recursion. We modify the state equmtio
We consider a flat non-informative prior][9] for the initialNPvalue,

modeled by a Gaussian distribution with a high variance Iiedtaves similar @) with the. AR mOdel[(IB)’ which results in an auQmented
to a flat prior over a certain interval. state equation,
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Fig. 1. MSE comparison of different PN estimation methodsdiéferent pilot densities over a block df’ = 101 symbols. Phase increment is colored with
variance R (0) = 10—3[rad?]. (a) Data-aided case, where all symbols are pilots. (b} Bidmsity 0f21%. (c) Pilot density 0f6%.

6% pilot density, at SNR$ and 30 dB, on averagel.3 and
6.7 1 0 ... 077611 T07 2.95 iterations are required, respectively.
The MSE of the PN estimator proposed if [4], based on
G interpolation of the PN estimates of the pilot symbols using
-1 =0 1T 0 ... O CG—2 | 4 | O . (16) discrete cosine transform (DCT), is close to the MAP estamat
in the data-aided case. However, decreasing the pilotiyansi
: Fig.[d-(b) and (c) t®21% and 6%, shows that the DCT-based
LCi—pl 0 ... 0 1 0] [Crp-1l 0 estimator performs poorly in low-pilot density scenaridbe

o

a1 9 el Qp Ckfl Ak

— ~ — Q’" reason is that this estimator is blind to the statistics ef N
=xp, =F =Xp-1 =Ap_1

process that limits its performance when the received gna
wherex;, is the new state vector that has a higher dimensi@fe not reliable.
compared to our original state variabdg, and A, denotes  Using an EKS designed for white PN increments in the

the new process noise that is white, with covariance colored case results in large MSEs in low-SNR and low-pilot
T . 5 density cases. In high-pilot density scenarios, the olagienmns
E[ArA] = diag ([0,03,0,...,0]) . (17)  are reliable and the EKS performs close to the MAP. When

We can use the new state equatibrl (16) along with the obsée pilot density is low, the tested EKS relies on PN stafisti
vation model[(B) to estimat@ by Kalman filtering/smoothing that are not matched to the real process, which resultsge lar
[0]. For the colored PN increments with a long memonyMSEs. Now consider the modified EKS designed with the low-
normally a high-order AR model is needed that results @fder AR approximation. Using a first-order AR model, the
a high dimensional state equatidn](16). In order to reduodified EKS reaches the MSE of the MAP in the data-aided
complexity, we approximate the colored PN increments withad21% pilot density cases. Withi% pilot density, where the
low-order AR process. Numerical simulations in §ed. IV shofiiodified EKS relies more on the PN statistics, a higher order
that even with such an approximation, the modified extendé® model is needed to improve the performanpex 5).
Kalman smoother (EKS) perform close to the proposed MAFi9.[-(a) also shows the data-aided MSE of the second-order

estimator, in several scenarios of interest. phase tracking loop [3]. _
Fig.[2 shows that the simulated MSE of the MAP estimator
IV. NUMERICAL RESULTS reaches the BCRB. Fifl] 3 afdl 4 compare the effect of using

We now study the performance of our proposed estimatdhge discussed estimators on symbol error rate (SER) of the
and compare with that of those available in the literatuystem, after three iterations between the PN estimatataan
(e.g., [1], [3], [4]). We consider transmission of a blockEuclidian-distance-based symbol detector. Mean and negia
of K = 101 16-QAM modulated symbols, with uniformly of the soft symbols are calculated as the mean and variance
distributed pilots. For simulation of the PN with coloredf the symbols’ a posteriori probabilities. In both sceosyi
noise increments, we use the results [df [6], [7], where tiiee MAP estimator outperforms other estimators. It can la&so
autocorrelation function of the PN increments for osailiat seen that in th6% density compared t21% scenario, a higher
with a colored noise source (flicker noise) has been derivedder AR model is needed for more accurate approximation
We set the parameters such that the variance of the PRthe colored PN increments. In addition to the estimators i
increments becomeB, (I = 0) = 10~3[rad?]. Fig.[d, we also study the performance of an iterative receive

It can be seen in Figl1-(a) that the MSE of the proposébat is designed based on the sum-product algorithm (SRA) [1
MAP estimator reaches the BCRB] [7] in the data-aided casd)is SPA-based receiver performs extremely well in presenc
where all symbols are pilots. We stop the optimization algef the Wiener PN, but it is not designed for PN with colored
rithm when the gradient is sufficiently small (helgg(6)| < increments.
10~5). We observe that the number of required iterations for
satisfying any level of accuracy depends on various pamnset
such as the block length, the PN statistics, the pilot degnsit In this letter, we showed that deriving the soft-input max-
and the SNR. In general, for most practical scenarios lexts thmum a posteriori (MAP) estimator for estimation of phase
5 iterations suffice. For instance, for simulations of Fig.ithw noise (PN) in oscillators with colored noise sources is a

V. CONCLUSIONS
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Fig. 2: Simulated variance of MAP vs. BCRB. Pilot dens¥if%, R¢(0) =
10~3[rad?], SNR = 20[dB].

concave optimization problem at moderate and high SNRs.
Further, we showed that the modified soft-input extended
Kalman smoother with low-order AR approximation of the
colored PN increments performs close to the MAP in severd$:
scenarios. From simulations, we observed that consideral
performance gain can be achieved by using the proposed
estimators compared to estimators that lack correct statis
the PN. The gain is more significant in low-SNR or low-pilot
density scenarios.
APPENDIX

Here, we find the mean and covariance of the MAP esti-
mation error, defined ag = (87 — 8), whered' denotes the
true value of. We first write the Taylor expansion @f(0)
around@t and evaluate it ad. Assuming thaid is close to
6", we can neglect the higher order terms and obtain

g(0) ~g(6") + H(6")(0 - 67). (18)
Note thaté is the root ofg() = 0. Therefore, .
~ ig.
0t =6+H '(07)g(0"), (19)
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wheret) £ (67 — ) = H~'(6%)g(6") is the estimation error ang hencex ~ _f'(6). Employing the data-aided BCRB

term whose mean is calculated as for

E[y] = E[H"(8%)g(67)].

estimation of colored PN derived inl[7], and using the

(20) System model (3), it is straightforward to find the soft-ibpu

BCRB, and show that it is identical to the covariance of

Setting the value ofj, from (@) in (I1) and[(IB) gives

g(0") = o[{ L

op
|31 + R{550n }
op

T
] —Cc ot (21a)

H(6") = —2diag (H } D —c, (21b) @

wherew;, £ e, with the same statistics a&,. It is clear

k=1 [1]

K

k=1

that H(8') andg(6T) are independent. Therefore, &
Ely] = E[H ™ (67)]E[g(6")] = 0, (22)

where the second equality is true becaligg(6")] = 0.

The covariance matrix ofy is determined as [5]

S = Blgy’] = E[H ' (0)g(0N)g” (0HH (07, @3)
In (2IB), it is possible to negleck{s;w;} compared to
3x|> for moderate and high SNRs. ThereforH,(67) is (7
approximated as

N~ oty — 9 1; |§k|2K -1

H(6") ~ H(o1) = 2d1ag<H - }kzj C™l, (24) [g

which is a deterministic matrix. Thus, the expectation i
@23) is only overg(0t)g”(67). Based on[(2]a) and after
straightforward mathematical manipulation,

Elg(6%)g” (61)) = —H(6T),

[

(25)

estimation erroix.
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