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Abstract—A low-complexity detector is introduced for
polarization-multiplexed M -ary phase shift keying modulation in
a fiber-optical channel impaired by nonlinear phase noise, gener-
alizing a previous result by Lau and Kahn for single-polarization
signals. The proposed detector uses phase compensation based
on both received signal amplitudes in conjunction with simple
straight-line rather than four-dimensional maximum-likelihood
decision boundaries.

I. INTRODUCTION

The Manakov equation describes the propagation of a
polarization-multiplexed signal in a fiber-optical channel. Two
major impairments, linear chromatic dispersion and the Kerr
nonlinear effect, are modeled by this equation. The nonlinear
effect causes a phase rotation proportional to the field instan-
taneous power. The interaction of the signal and the amplified
spontaneous emission (ASE) noise generated by optical am-
plifiers due to the nonlinear Kerr effect gives rise to nonlinear
phase noise (NLPN). NLPN imposes a major degradation in
the performance of coherent optical data transmission systems.

Bononi et al. [1] investigated the effect of NLPN on pop-
ular modulation formats for single-channel and wavelength-
division multiplexing systems in a dispersion-managed fiber
link. The performance of orthogonal frequency-division mul-
tiplexing systems in the presence of NLPN has been evaluated
in [2] by theoretical, numerical, and experimental approaches.
In [3], [4, ch. 4], comprehensive surveys of known techniques
for the analysis and characterization of NLPN and its impact
on the system performance are provided.

The statistics of NLPN and the detector design for a channel
with NLPN have been studied in [5]–[7] by analytical ap-
proaches and in [8] by numerical methods. The joint probabil-
ity density function (pdf) of the received amplitude and phase
given the initial amplitude and phase of the transmitted signal
and the optical signal-to-noise ratio (OSNR) is derived in [5],
[9], [10] [4, pp. 157, 224–225] for a fiber-optical channel
with NLPN caused by distributed or lumped amplification.
Moreover, compensation of NLPN has been studied in [11]
based on the aforementioned pdf.

In this paper, we extend the detector structure introduced
for a single polarization (SP) M -PSK system in [11] to
polarization-multiplexed (PM) M -PSK, using the signal statis-
tics derived in [12]. To this end, we first introduce a simplified
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approach to reproduce the result in [11] for the SP case. This
method can be easily used to extend the result to the PM case
and can also be applied to both lumped and distributed amplifi-
cation. For simplicity, we assume single-channel transmission
and inter-channel effects are not taken into consideration. The
symbol error rate (SER) of the proposed detector is compared
to the performance of the maximum-likelihood (ML) detector
for PM-4-PSK and to the performance of the ML detector for
SP-4-PSK for the same bandwidth as well as for the same data
rate.

II. SYSTEM MODEL AND PRELIMINARIES

We assume zero dispersion to make the analysis applicable
to memoryless (nondispersive) fiber-optical channels, similarly
as in, e.g., [5], [8], [10], [11], [13]. Due to this assumption,
the subsequent analysis ignores the interaction of chromatic
dispersion and nonlinearity. The resulting model can serve as
an approximation for dispersion-managed transmission links
provided that the local accumulated dispersion is sufficiently
low [1], [12]. For a zero polarization-mode and chromatic
dispersion fiber-optical channel, the Manakov equation with
loss included reduces to [14, ch. 6]

j
∂E

∂z
+ γ(EE†)E + j

α

2
E = 0, (1)

where E = (Ex, Ey) is the polarization-multiplexed launched
envelope signal into the fiber, γ is the nonlinear coefficient, α
is the attenuation coefficient, † denotes Hermitian conjugation,
and z is the distance from the beginning of the fiber. The
solution to (1) at time t can be written as [14, ch. 4]

E(z, t) = E(0, t)q(z) exp

(
jγP0(t)

∫ z

0

q2(τ) dτ
)
, (2)

where P0(t) = |Ex(0, t)|2 + |Ey(0, t)|2 is the instantaneous
launched power into the fiber and q(z) = exp(−αz/2) is a
function that describes the power evolution.

Here, we assume a fiber link with total length L and either
distributed or lumped amplification to compensate for the fiber
loss perfectly. We consider ASE noise within the optical signal
bandwidth, i.e., ignoring the Kerr effect induced from out-of-
band signal and noise in the same way as in [13]. If a four-
dimensional (4D) signal S = (Sx, Sy), consisting of two two-
dimensional (2D) complex signals, is transmitted, it experi-
ences an overall NLPN φNL = φx+φy. The terms φx and φy are
generated by the interaction of the signal and noise due to the
Kerr effect in polarizations x and y, respectively. For lumped
amplification and a link consisting of N spans, ASE noise nix,
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i = 1, . . . , N , with variance σ2
0 is added after each span.1 One

may use (2) to obtain φx = γLeff
∑N
i=1 |Sx+

∑i
l=1 n

l
x|2, where

Leff = (1−exp(−αL/N))/α is the effective nonlinear length.
It is clearly seen that signals in both polarizations contribute
to the generated NLPN φNL. The received electric field E can
be written as E = Êe−jφNL , where Ê = S +

∑N
i=1 n

i is the
linear part of the electric field and ni = (nix, n

i
y). One may

regard distributed amplification as lumped amplification with
an infinite number of spans. This gives limN→∞NLeff = L.
In this case, a continuous amplifier noise vector n(z) =
(nx(z), ny(z)) is considered. The elements of this vector are
zero-mean complex-valued Wiener processes [4, p. 154] with
autocorrelation function E[nx(z1)n∗x(z2)] = σ2

d min(z1, z2),
where σ2

d = 2hνoptWαnsp [11], hνopt is the energy of a
photon, nsp is the spontaneous emission factor, and W is the
bandwidth of the optical signal. The SNR vector is defined
as ρ = (ρx, ρy) where ρx is |Sx|2/(Lσ2

d ) or |Sx|2/(Nσ2
0) for

distributed or lumped amplification, respectively. The normal-
ized received amplitude rx is denoted by |Ex|/(σd

√
L) or by

|Ex|/(σ0

√
N) for distributed and lumped amplifications.

The joint pdf of the received phase vector θ = (θx, θy) and
the normalized amplitudes r = (rx, ry) of a zero-dispersion
fiber-optical channel is [12]

fΘ,R(θ, r) =
fR(r)

4π2
+

1

2π2

∞∑
kx=1

Re
{
Ckx(r)ejkxθx

}
+

1

2π2

∞∑
kx=1

∞∑
ky=1

Re
{
Ck(r)ejk·θ + Ck∗(r)ejk

∗·θ
}

+
1

2π2

∞∑
ky=1

Re
{
Cky(r)ejkyθy

}
, (3)

where fR(r) is the joint pdf of the two normalized independent
Ricean random variables rx and ry, and the Fourier coefficients
Ck(r) are given in [12]. In (3), we assume the transmitted
phase vector to be (0, 0). Due to the rotational invariance of
the channel, the pdf for an arbitrary transmitted phase vector
(θ0,x, θ0,y) is obtained by replacing θx and θy in (3) with θx−
θ0,x and θy − θ0,y, respectively.

For an SP scheme, the joint pdf of the phase and the nor-
malized amplitude of the received signal in the corresponding
polarization is simplified to [4, ch. 5]

fΘ,R(θ, r)=
fR(r)

2π
+

1

π

∞∑
k=1

Re
{
Ck(r)ejkθ

}
, (4)

where fR(r) is the Ricean pdf of the amplitude r, and the
Fourier coefficients Ck(r) are given in [12] for both types of
amplifications. Again, the transmitted phase in (4) is assumed
to be 0, and the pdf for an arbitrary transmitted phase θ0 is
obtained by replacing θ with θ − θ0.

In the following, we consider M -PSK constellations with
sk =

√
Es exp

(
j πM (2k + 1)

)
, k = 0, . . . ,M −1, where Es is

the average energy of the constellation.

1Throughout the paper, we give expressions for polarization x only, if
polarization y has an equivalent expression.

θc
x

= − arg C1(rx)

θc
y

= − arg C1(ry)

rxe
jθx

rye
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e
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e
jθc

y

(a)
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x

= − arg C(0,1)(r)
b

b
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rye
jθy

e
jθc

x

e
jθc

y

(b)

Fig. 1. Receiver for PM-M -PSK with (a) separate detection (PM-Det1) and
(b) joint calculation of the amplitude-dependent phase rotations (PM-Det2).

III. THE ML RECEIVER FOR SP-M -PSK

For SP-M -PSK, the optimal decision (Voronoi) regions
for the received constellation have spiral shape (cf. [11, Fig.
1]), and hence ML detection is computationally complex. To
decrease the complexity of the detector, Lau and Kahn showed
that straight-line decision boundaries can be used, provided
that an amplitude-dependent phase rotation θc is applied
before detection [11]. The corresponding receiver structure is
illustrated in the top half of Fig. 1(a). It can be seen that the
phase rotation is solely a function of the received amplitude
in one polarization and a simple ML detection of M -PSK
for additive white Gaussian noise (AWGN) with straight-line
decision boundaries is subsequently performed.

In this section, we introduce a new approach to derive the
optimal phase rotation as a function of the received amplitude.
In contrast to [11], this approach can be easily extended to
PM-M -PSK. For a transmitted phase of θ0 = 0, we assume
that the conditional pdf fΘ|R(θ|r) of the received phase θ
given the received amplitude r is approximately symmetric
around θmax(r), where θmax(r) denotes the phase value where
fΘ|R(θ|r) is maximum. This assumption is motivated by
inspection of the pdf and its validity is justified later by
the obtained results. In fact, an equivalent approximation was
also done in [11, App. A]. This assumption is used for both
distributed and lumped amplifications.

Lemma 1: Let fX(x) be the (periodic) pdf of a random
angle X . Furthermore, let the pdf be symmetric around
xmax ∈ (−π, π], the value where fX(x) has its maximum.
If the pdf decreases monotonically from xmax to xmax ± π,
then xmax = − arg ΨX(1), where ΨX(ν) is the (discrete)
characteristic function (CF) of X .

Proof: Define X̃ = X − xmax. Since the pdf of X̃ is an
even function, its CF is real. Furthermore, the CFs of X and X̃
are related via ΨX(ν) = ΨX̃(ν)e−jνxmax . Letting ν = 1 and
solving for xmax gives xmax = arg ΨX̃(1)− arg ΨX(1). Thus,
it needs to be shown that arg ΨX̃(1) = 0. Having already
established that ΨX̃(1) is real, we only need to show that it
is also positive. This follows from the definition ΨX̃(1) =∫ π
−π fX̃(x) cos(x) dx and the fact that fX̃(x) is nonnegative

and decreases monotonically from 0 to ±π.
Using Lemma 1, one can compute the rotation of the M -

PSK ML decision boundaries due to NLPN as described in
the following theorem.

Theorem 1: Consider a memoryless fiber-optical channel
with NLPN. The decision boundary of the ML detector for
SP-M -PSK between symbols sk and sk+1 has the polar
coordinates (r, θb(k, r)), where θb(k, r) = −C1(r) + 2k/M
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for r ≥ 0 and C1 is the first Fourier coefficient in (4).
Proof: The ML decision boundary between the two sym-

bols of the M -PSK constellation with k = 0 and k = M − 1
is determined in such a way as to satisfy

fΘ|R,Θ0
(θc(r) | r,− π

M ) = fΘ|R,Θ0
(θc(r) | r, πM ).

Using the symmetry of fΘ|R,Θ0
(θ|r, θ0) around θmax(r) + θ0,

we obtain θc(r) = θmax(r). Using Lemma 1, we get θmax(r) =
− arg ΨΘ|R,Θ0

(1 | r, 0) = − argC1(r).

IV. RECEIVERS FOR PM-M -PSK

For a fixed state of polarization, we receive two dependent
2D symbols, which have been rotated by the NLPN equally.
Using (3), the ML detector in this case can be written as

θ̂0 = arg max
θ0

fΘ,R|Θ0
(θ, r|θ0). (5)

The optimization is performed over all possible M2 transmit-
ted phase combinations for a PM-M -PSK signal. We refer to
this detector as “PM-ML”.

A simple, but clearly suboptimal, way to reduce the com-
plexity of solving (5) is to treat the received signals in both
polarizations independently. In other words, the marginal pdfs
fΘx,Rx(θx, rx) and fΘy,Ry(θy, ry) are used to perform detection
separately in each polarization, which leads again to spiral-
shaped decision boundaries as in Sec. III. Equivalently, one
may extend the receiver structure for SP in a straightforward
manner as shown in Fig. 1(a), where a different rotation angle
is applied to each received symbol, based on the received
amplitude in the corresponding polarization. Using Theorem 1,
the computation of the rotation angles is then based on the first
Fourier coefficient of the two marginal pdfs. We refer to this
detector as “PM-Det1”.

As seen in (2), the phase rotation due to the nonlinear
Kerr effect is a function of the signal amplitudes in both
polarizations. Hence, one may improve the performance of
PM-Det1 by taking into account the amplitudes of both
polarizations in computing the phase rotation. To this end, we
use the same symmetry assumption as in the previous section
for fΘx|R(θ|r) = fΘx,R(θ, r)/fR(r), where fΘx,R(θ, r) is
the marginal of (3) with respect to Θy, i.e., we assume that
fΘx|R(θ|r) is symmetric around the phase for which this pdf is
maximum. This assumption allows us to describe the decision
boundaries of the PM-M -PSK signal distorted by NLPN in
each polarization as the rotated version of the straight-line
decision boundaries for an AWGN channel.

Theorem 2: The decision boundaries of the detector given
by

θ̂0,x = arg max
θ0,x

fΘx,R|θ0,x(θx, r|θ0,x) (6)

for polarization x can be transformed to straight lines using
the phase rotation given by

θc
x(r) = − argC(1,0)(r), (7)

where C(1,0)(r) is the Fourier coefficient appearing in (3)
with kx = (1, 0). Similarly, the rotation for polarization y
is obtained as θc

y(r) = − argC(0,1)(r).

(a) no comp. (b) θcx = f(rx) (c) θcx = f(r)

Fig. 2. Scatter plots in the x polarization for (a) no compensation, (b)
compensation according to Fig. 1(a), and (c) according to Fig. 1(b). Decision
boundaries in (b) and (c) are straight lines. In (a), the boundaries are spiral
shaped and depend on the received amplitude in the y polarization.

Proof: One may follow an analogous approach as in the
proof of Theorem 1, by replacing fΘx|R(θ|r) with fΘ|R(θ|r)
to show that the decision boundary between symbols Sx = sk
and Sx = sk+1 in polarization x has the parametric description
rx exp(jθc

x(r) + 2jkπ/M).
The proposed detector implementing (6) via this phase rotation
method is referred to as “PM-Det2” and shown in Fig. 1(b).
It can be seen that the rotation angle in each polarization
is computed using the received amplitudes r. It is worth
mentioning that since the rotation is an invertible operation,
joint 4D demodulation is still possible after the rotation.
For complexity reasons, however, we perform hard decision
on each 2D soft symbol using simple straight-line decision
boundaries as shown in the figure.

In Fig. 2, a qualitative comparison of the two different
rotation schemes corresponding to PM-Det1 and PM-Det2 is
shown. Fig. 2(a) shows a scatter plot of the received symbols
in polarization x directly after the channel, i.e., no phase
compensation is assumed. In Fig. 2(b), a phase rotation of
each received symbol is applied, which is solely based on
the corresponding received amplitude of this symbol (PM-
Det1). Lastly, Fig. 2(c) shows the result of applying a phase
rotation that is based on the received amplitude of the received
symbols in both polarizations (PM-Det2). Observe that the
second rotation method leads to a notably smaller phase
variance compared to the first method. However, it should be
mentioned that the receiver structure shown in Fig. 1(b) does
not correspond to the ML receiver for PM-M -PSK, since the
residual phases in both polarizations after the rotation are not
statistically independent. The performance loss compared to
ML detection is quantified in the next section.

V. PERFORMANCE ANALYSIS

The SER of PM-M -PSK for PM-Det1 and PM-Det2 can be
computed analytically. After the introduced phase rotations,
the marginal pdf of the phase in polarization x, given that the
phase of the transmitted signal is zero, is obtained by replacing
θx with θ′x−θc

x in fΘx|R(θ|r) and then integrating out the radii
rx and ry over [0,+∞) to get

fΘ′x(θ) =
1

2π
+

1

π

∞∑
k=1

cos(kθ)

∞∫
0

∞∫
0

|C(k,0)(r)|drxdry. (8)

Here, we only show how to compute the SER of PM-Det2 for
a PM-M -PSK system. An analogous derivation can be applied
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Fig. 3. The SER of SP and PM systems with 4-PSK versus the transmitted
power per polarization Pt.

for PM-Det1. One can write

SERx = 1−
∫ π

M

− π
M

fΘ′x(θ)dθ =
M − 1

M
−

∞∑
k=1

2sinc
(
k
M

)
M

∫ ∞
0

|Cx
(k,0)(rx)|drx

∫ ∞
0

|Cy
(k,0)(ry)|dry,

where Cx
(k,0) and Cy

(k,0) are computed using [12, eq. (26)].
In Fig. 3(a), the performance of PM-4-PSK is evaluated

using the above analytical approach for PM-Det1 and PM-
Det2. The SER of the ML detector defined by (6) is given by
a four-dimensional integral of the pdf over the ML decision
regions. This SER, estimated by Monte-Carlo integration, is
also shown in Fig. 3(a). Moreover, we compute the SER of SP-
4-PSK to compare with SP data transmission in two different
scenarios: (i) For the same data rate per polarization (i.e., the
same bandwidth) and (ii) for the same total data rate as the
PM case. This evaluation is done for distributed amplification
with channel parameters L = 9000 km, γ = 1.4 W−1km−1,
Rs = 28 Gbaud, νopt = 193.55 THz, α = 0.25 dB/km, and
Fn = 6 dB. As seen in Fig. 3(a), the PM schemes show
negligible performance degradation in the linear regime for a
fixed bandwidth (case (i)), i.e., for Pt < −15 dBm, compared
to the SP scheme. For a fixed data rate (case (ii)), one may
observe a 2 dB performance improvement using PM-Det2, at
a SER of 1.5×10−2. In the strongly nonlinear regime, the SP
scheme is superior to PM at the expense of losing half of the
data rate. Furthermore, in the linear regime, the SP scheme
in case (i) and the PM scheme have the same performance
and their SER curves overlap, while in the strongly nonlinear
regime, the SER of the PM scheme converges to the SER
of the SP scheme in case (ii). This is because the system
performance is intimately related to the product of the noise
variance and the transmit power in the nonlinear regime, which
is the same for these two scenarios. Fig. 3(a) also indicates
that in the linear regime, the detectors PM-Det2 and PM-Det1
perform similarly. However, the reduction in circular variance
observed in Fig. 2 translates into a noticeably better SER in the
nonlinear regime for PM-Det2 when compared to PM-Det1.
In the region of interest, i.e., SNRs around −10 dBm, the
performance degradation of PM-Det2 compared to the ML de-

tector is 0.7 dB. This is due to independent detection of phase
information in the two polarizations. In Fig. 3(b), we also show
the performance of DP-Det1 and DP-Det2 for a dispersion-
managed link using the split step Fourier method. The system
parameters are the same as before, but now we assume 45
fiber spans of length 90 km and a lumped amplification
scheme. Dispersion is compensated after each span using an
ideal dispersion-compensating fiber. The symbol rate is varied
between 0.5 and 5 Gbaud to determine the robustness of the
detector with respect to residual dispersion. The memoryless
pdf loses its accuracy for high symbol rates due to the strong
interaction between nonlinearities and dispersion and therefore
the superiority of the proposed detector disappears for these
parameters and symbol rates higher than 3 Gbaud. Similar
observations regarding the accuracy of the memoryless model
have been made in [12].

VI. CONCLUSION

A low-complexity detector is proposed for memoryless
polarization-multiplexed fiber-optical channels by compensat-
ing the amplitude-dependent NLPN. The compensation is per-
formed by a phase rotation of the received symbols depending
on the amplitudes in both polarizations. The performance
results confirm the superiority of PM schemes to SP for the
same data rate.
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