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Abstract—In-network caching is a key component in
information-centric networking. In this paper we show that there
is a tradeoff between two common caching metrics, byte hit rate
and footprint reduction, and show that a cooperation policycan
adjust this tradeoff. We model the cooperation policy with only
two parameters – search radiusr and number of copies in the
network K. These two parameters represent the range of coop-
eration and tolerance of duplicates. We show how cooperation
policy impacts content distribution, and further illustra te the
relation between content popularity and topological properties.
Our work leads many implications on how to take advantage of
topological properties in in-network caching strategy design.

I. I NTRODUCTION

Caching is a key component in information-centric networks
(ICN) [1]–[4]. In-network caching not only reduces an ISP’s
outgoing traffic, but also reduces traffic within an ISP network.
Byte hit rate (BHR) is a common metric for evaluating savings
in inter-ISP traffic, however, there is no widely accepted metric
for evaluating savings in intra-ISP traffic. Footprint reduction
(FPR) [5] has been proposed as one such metric and is the one
we use in this paper. We show that BHR by itself is insufficient
in capturing the performance of a network of caches; this is
often overlooked by existing work. This paper shows that there
is a subtle interplay between BHR and FPR and that in some
cases these two metrics oppose each other. We argue that a
cooperation policy among routers can mediate this tradeoff
between BHR and FPR and show that two parameters can tune
the desired operating region: maximum number of duplicates
for each content item (K) and the radius for cooperation (r).

To improve BHR, a cooperation policy covering a large
radius enhances network storage utilization by reducing the
number of duplicates (cache diversity in [6]). However, large-
scale cooperation causes communication overheads and in-
creases intra-ISP traffic because requests may be redirected
many times. Despite efforts in designing a cooperation pol-
icy [7], [8], [10], a proper model for its impact on BHR and
FPR is still missing. We characterize cooperation policy byits
search strength (r) and capability of reducing duplicates (K).
We show how differentr andK values lead to different trade-
offs between BHR and FPR, and discuss their implication.

There is considerable interest in exploiting topological prop-
erties in cache networks. Initial efforts [11], [12] indicate
centrality as a promising metric, but questions like how to
measure the topological impact on performance and mecha-
nism of the interplay between topology, and caching strategy
still remain open. We use a cache cooperation policy to couple

content with topology and show that this coupling explains
how topological properties impact caching performance; the
tightness of the coupling indicates degree of topology’s impact.

Our contributions in this paper are as follows:
1) We highlight the importance of FPR as a performance

metric for in-network caching, and show how BHR and
FPR conflict each other at the Pareto frontier.

2) We propose a cooperation policy model to show the
relationship between cooperation policy, content, and
topology. We also categorize different cooperation types.

3) We propose a novel way to measure the impact of
topology, and perform a thorough numerical analysis to
show how it influences system performance.

II. SYSTEM MODEL

Consider a network ofM routers,L of which directly
receive user requests and areedge routers. A router denoted
by Ri is equipped with a storage capacity ofCi bytes. We
assumeN distinct files, denoted byfi and beingsi bytes in
size. All files are stored permanently at the Content Provider
(CP) represented as the(M+1)th router (RM+1). Denote the
request probability offi by this file’spopularity pi, and denote
the popularity vector byp = [pi]. When a request forfi arrives
to an edge routerRj , Rj first searchesfi in its cache. IfRj

possesses it,Rj transmitsfi to the user; this ahit. Otherwise,
in case of amiss, Rj contacts routers in itsr-hop neighborhood
to see if any of them hasfi; this is thecooperation policy. We
call the set of all routers located at mostr-hops away from
Rj as thesearchable set of Rj , denoted bySc

j . If fi is stored
in Sc

j , it is retrieved toRj from the closest router (if multiple
routers holdingfi) and forwarded to the user. LetRj,CP be
the set of all routers on the path between a leaf routerRj and
the CP (excluding the CP). If no router inSc

j stores the item,
the request is routed to the next router inRj,CP and searched
there as well as in the new searchable set; there may be overlap
between searchable sets of two neighboring routers, depending
on r. We define thereachable set of a router denoted bySr

j

as the set of all routers in the searchable sets of routers in
Rj,CP . If no router inSr

j hasfi, it is downloaded from the
CP and routed to the user following the backward path.

III. O PTIMAL IN-NETWORK CACHING

A. Cooperation Policy Design

Performance of a cooperation policy is determined by
contents in the searchable set which is a function ofr. The
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diversity of contents cached in this set increases caching
efficiency which then calls for a caching scheme avoiding
duplicate copies in the set [8], [9]. However, popular content
may better be cached in multiple routers to be more accessible
from all network edge routers. We model this tradeoff with
parameterK which is the maximum number of content
replicas in the network. In reality every file would have its
own maximum number of copies which emerges automatically
if r is fixed; we use a fixedK to illustrate system behavior
across the whole parameter range. Using these two parameters,
we name a cooperation policy with parametersK and r as
(K, r)-Cooperation Policy which can be classified into four as
follows:

1) Type I, small r, small K: Weak cooperation due to
limited access to other caches and limited availability of
popular content; the system is not using all its resources.

2) Type II,small r, largeK: This is en-route caching. The
most popular content is pushed to the network edge.

3) Type III, large r, small K: Network storage is effec-
tively a single cache. Popular content is in network core.

4) Type IV, large r, largeK: Strong cooperation. BHR and
FPR cannot be improved at the same time since caching
system is fully-utilized and reaches its Pareto frontier.

The complexity of cooperation can be calculated via com-
munication and computation overhead [8]. Initially, all routers
exchange their set of stored contents with routers in their
searchable set. Assuming that each content is unit size and
dropping the router index, this initialization step requires
O(MC|Sc|) messages and results inO(M2C) message ex-
changes in the worst case. Upon a change in the cache of a
router, this router informs all itsr-hop neighbours about the
evicted and admitted items. This per change announcement
requiresO(|Sc|) message in the worst case. In terms of
computation, the cooperation does not involve any processing
rather than discovering which of the replicas is closest to a
specific router. Therefore, computation overhead isO(|Sc|).

B. Optimal Caching under (K, r)-Cooperation Policy

Assume a centralized entity deciding which items are stored
at each routerRi when a user requests itemfu at timet. This
entity knows the content distributionXt = [xt

i,j ] wherext
i,j is

1 if fi is stored at nodeRj , and zero otherwise. An optimal
caching strategy (COPT) determines whether to cachefu in
the routers between the edge routerRl receiving the request
and routerRhit storingfu, and which items to evict in case of
full cache occupancy. We refer the set of all these intermediate
nodes on the path betweenRl andRhit asS.
COPT minimizes the total cost of serving user requests by

exploiting its knowledge of current content distributionXt, file
popularities (p), and file size (si) information. Letcj,k denote
the cost of downloading one byte atRj from Rk. An item
can be served from edge routerRj or retrieved from another
routerRk including the CP. Let our decision variablext+1

i,j,k be
1 if Rj downloadsfi from Rk. The cost function reflects the
distance between the two entities and can be calculated using
shortest path algorithms. For a (K, r)-Cooperation Policy,as

the routers not inSr
j are not reachable from this edge router,

we setcj,k = ∞ if Rk 6∈ Sr
j . For harmony of notation, we

re-define the content distribution byXt = [xt
i,j,j ] (and dropt

if we do not refer to a specific time).COPT is formulated as:

min
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s.t. Cache capacity constraints: (1)
N
∑

i=1

six
t
i,j,jx

t+1
i,j,j+sux

t+1
u,j,j(1−xt

u,j,j)≤Cj , ∀Rj ∈ S (2)

N
∑

i=1

six
t+1
i,j,j≤Cj , ∀Rj 6∈ S (3)

Maximum replica constraint:
M
∑

j=1

xt+1
i,j,j ≤ K ∀i, (4)

Feasibility constraints:xt+1

i,j,k ≤ xt+1

i,k,k ∀i, ∀k (5)

xt+1
i,j,j = xt

i,j,j ∀i, ∀Rj 6∈ S (6)

Service constraint:1 ≤
M+1
∑

k=1

xt+1

i,j,k ∀i, ∀j, ∀k ∈ L (7)

Availability constraint:xt+1

i,M+1,M+1
= 1 ∀i. (8)

Our objective (1) calculates the cost of serving user requests
over all the edge routers and minimizes this cost by favoring
the most popular files. Note that ifxi,j,j = 1, then fi
is stored inRj . Cache capacity constraints in (2) and (3)
ensure the total size of items to be stored in a router’s
cache cannot exceed cache capacity. Only routers inS can
consider putting the requested itemfi into their caches.
Maximum replica constraint in (4) ensures that an item can
have maximumK replicas in the network. Note that by
removing this constraint, system can figure out optimalK for
each neighborhood automatically.Feasibility constraint in (5)
reflects fi being retrievable fromRk only if Rk storesfi
whereas (6) states that contents cached by routers not inS do
not change.Service constraint in (7) forces the content to be
served from some location (i.e., local cache, another router’s
cache, or the CP) whileavailability constraint in (8) ensures
that all items are available from the CP. Decision variables
are binary, i.e.,xi,j,k ∈ {0, 1}. COPT is an integer linear
programming problem which can be solved with optimization
software for small instances of the problem but it requires
low-complexity distributed schemes for large scale networks.
We leave distributed solutions for future work.

Let Fj = {uj,1, uj,2, uj,3...} be the list of user requests
arriving at leaf routerRj whereuj,i is the ith request for a
file with sizesuj,i

. Rj can retrieve it only from its reachable
setSr

j which is defined as

Sr
j =

⋃

Rk∈Rj,CP

Sc
k. (9)
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A request will be counted as hit if at least one of the routers
in Sr

j stores it. More formally, we define hit functionδj,i for
requestuj,i (assuminguj,i is a request forfi) as follows:

δj,i =

{

1 if
∑

Rk∈Sr
j
xi,k,k ≥ 1

0 o/w.

Next, we calculate BHR as follows:

BHR =

∑L

j=1

∑

∀uj,i∈Fj
suj,i

δj,i
∑L

j=1

∑

∀uj,i∈Fj
suj,i

. (10)

If requestuj,i is served from a router that ishj,i hops away
from the user and the path fromRj to the CP isHj hops long,
we can compute the FPR as follows:

FPR = 1−

∑L

j=1

∑

∀uj,i∈Fj
suj,i

hj,i

∑L

j=1
Hj

∑

∀uj,i∈Fj
suj,i

. (11)

IV. N UMERICAL ANALYSIS

A. Setup & Metrics

We performed numerical evaluation on realistic and syn-
thetic topologies. Realistic topologies are from [13], and
synthetic topologies are scale-free networks of 50 nodes. Each
node can store 25 objects. We present results on synthetic
networks; realistic topologies produce similar results. Content
popularity is modeled according to [14], and content set
contains 5000 objects. We calculate the betweenness centrality
(CB) of each router in order to analyze its impact on cached
content in a specific router under various(K, r) pairs. We
define coupling factor (CPF) as the Pearson correlation be-
tweenCB and average popularity per bit in a node’s cache;
it measures topological impact on system performance. The
rationale is that optimal system performance is achieved by
placing content at specific locations in a network accordingto
its popularity and thatCB is a good metric to characterize a
node’s position in a graph. Strong correlation between the two
indicates that content is tightly “coupled” with topology and
topological properties influence system performance.

In the simulations, 30% of the edge routers are randomly
selected and connected with client, and the server randomly
connects to one of the 5 core nodes with highestCB. Exper-
iments were repeated at least 50 times.

B. Pareto Frontier

Fig. 1 shows howK and r impact caching performance.
The solution toCOPT provides the optimal cache profiles for
givenK andr (e.g., pointA in Fig. 1), but it does not indicate
the best values for these two parameters, i.e., we can improve
performance by tuningK andr, because the system may be
underutilized. However, our optimization model can be used
to find Pareto frontier of the performance (green arcBC in
Fig. 1). When we reach the Pareto frontier, we cannot improve
BHR or FPR without hurting the other. The fan-shaped area
defined byABC is the area which a cooperation policy can
explore to find the best tradeoff betweenK and r. Point D
where we eventually reach the Pareto frontier depends on how

Fig. 1: Conflicting BHR and FPR at the Pareto frontier. Type
of cooperation at different points shown on right.

cooperation policy balances BHR and FPR. LinesAB andAC
are not parallel to the x- and y-axis, since changing either of
r or K affects both BHR and FPR, as we show below.

The upper graph in Fig. 2a shows how BHR and FPR vary
as we move along the segmentsAB, BC, andCA, by varying
r andK. Starting fromA and moving clockwise (left to right
in the figure), we increase the search radius which improves
BHR, but decreases FPR due to additional search traffic or
letting content be cached at routers with higherhj,i in (11).
FromB toC, along the Pareto frontier, we observe the tradeoff
between BHR and FPR, with FPR reaching its maximum at
C. From C to A, r is 0 so the system reduces to en-route
caching where larger number of copies (nearC) is beneficial,
hence as we move towardsA, both BHR and FPR decrease.
Fig. 2b shows heatmaps of CPF, BHR, and FPR as function
of K and r. Lighter values indicate higher values. It shows
how BHR and FPR conflict each other, i.e., one achieving the
highest performance while the other has the worst, in regions
corresponding to the Pareto frontier.

C. Coupling Content and Topology

The lower plot in Fig. 2a shows how CPF evolves along the
same path. Values close to -1 or 1 indicate strong dependence
between popularity and betweenness. A router with a highCB

is in or close to the core of the network whereas a router with
low CB is close to the network edge. AtB, where CPF is
close to 1, popular content is in nodes with highCB, i.e., the
core, whereas atC, where CPF is close to -1, it is at the edge
whereCB is low. Along the Pareto frontierBC, we observe a
“migration” of content from core to edge. AtD where CPF is
0, both BHR and FPR are close to halfway point between their
respective minima and maxima atB andC. We have observed
this phenomenon across a wide range of experimental settings,
but its full investigation is left for further study.

Fig. 3 shows cooperation policy’s impact on content place-
ment along the Pareto frontierBC. PointB (Fig. 3a), repre-
senting Type III cooperation favors BHR and places content
in the core. PointD along BC (Fig. 3b) strikes a tradeoff
between BHR and FPR and the content is neither in the core
nor on the edge; this is Type IV cooperation. Finally, pointC

(Fig. 3c) favors FPR and pushes popular content to the edge.
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Fig. 2: Performance of(K, r)-Cooperation along the boundary defined by ABC (a), and for all (K, r) pairs (b).
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(a) PointB in Fig. 1.
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(b) PointD in Fig. 1.
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(c) PointC in Fig. 1.

Fig. 3: Content placement at pointsB, D, andC. Red color (dark dots) marks the most popular content. Nodesare grouped
in circles according toCB . Content migrates from core to edge as we move fromB to C.

D. Implications

Our results have profound implications on relationship
between cooperation policies, content popularity, and network
topology. They also give us hints on when and how topological
properties should be taken into account in caching strategy
design. We summarize the main implications as follows:

1) Cooperation policy pushes performance to Pareto fron-
tier and couples content popularity and topological prop-
erties together. How and where it falls on the frontier
depends on how it balances BHR and FPR.

2) Content popularity and topology strongly correlate with
each other only close to the Pareto frontier. Whether the
correlation is positive or negative depends on how the
cooperation policy favors one of the two metrics.

3) The optimization model implies thatCB has more
influence on performance when we get closer to pointsA

or B in Fig. 1; only Type II and III cooperation policies
can fully utilizeCB to enhance performance.

4) We only present results on betweenness centrality. We
also experimented with other centrality measures and
got similar results. The impact of other properties like
diameter or clustering coefficient needs further study.

5) We conjecture that tight coupling between content pop-
ularity and topology comes similar mathematical struc-
tures as both exhibit power-law properties. Were popu-
larity closer to uniform or topology closer to a random
network, this tight coupling might disappear. However,
this matter requires further study.

V. CONCLUSION

We modeled cache cooperation by its search radius and
tolerance of duplicates. We performed a thorough numerical
analysis and showed that cooperation policy pushes system
performance to its Pareto frontier, and how it couples content
with topology. We proposed a way to measure impact of
topology on system performance. We show when and how
topological information should be taken into account in in-
network caching strategy design.
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