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Abstract—In-network caching is a key component in content with topology and show that this coupling explains
information-centric networking. In this paper we show that there  how topological properties impact caching performance; th

is a tradeoff between two common caching metrics, byte hit e ey i ;
and footprint reduction, and show that a cooperation policycan tlg(h)tness otf tS et_c oup_lln(E:]hl_ndlcates degreefo{ltopo.logylsam.
adjust this tradeoff. We model the cooperation policy with aly ur contributions 1n this paper are as 1ollows.

two parameters — search radiusr and number of copies in the 1) We highlight the importance of FPR as a performance

network K. These two parameters represent the range of coop- metric for in-network caching, and show how BHR and
eration and tolerance of duplicates. We show how cooperatio EPR conflict each other at the Pareto frontier.

policy impacts content distribution, and further illustra te the 2) Wi fi i del to sh th
relation between content popularity and topological propéties. ) We propose a cooperation policy model to show the

Our work leads many implications on how to take advantage of relationship between cooperation policy, content, and
topological properties in in-network caching strategy deggn. topology. We also categorize different cooperation types.

3) We propose a novel way to measure the impact of

topology, and perform a thorough numerical analysis to
Caching is a key component in information-centric networks  show how it influences system performance.

(ICN) [1]-[4]. In-network caching not only reduces an ISP’s
outgoing traffic, but also reduces traffic within an ISP netwo
Byte hit rate (BHR) is a common metric for evaluating savings Consider a network of\/ routers, L of which directly
in inter-ISP traffic, however, there is no widely acceptedrine receive user requests and adge routers. A router denoted
for evaluating savings in intra-ISP traffic. Footprint redan by R; is equipped with a storage capacity Of bytes. We
(FPR) [5] has been proposed as one such metric and is the aasumelN distinct files, denoted by; and beings; bytes in
we use in this paper. We show that BHR by itself is insufficiersize. All files are stored permanently at the Content Provide
in capturing the performance of a network of caches; this (E€P) represented as tti@/+1)" router (Rs41). Denote the
often overlooked by existing work. This paper shows thateherequest probability of; by this file’s popularity p;, and denote
is a subtle interplay between BHR and FPR and that in sortfe popularity vector bp = [p;]. When a request fof; arrives
cases these two metrics oppose each other. We argue thta an edge routeR;, R; first searcheg; in its cache. IfR;
cooperation policy among routers can mediate this tradeoffossesses iR; transmltsfl to the user; this éit. OtherW|se
between BHR and FPR and show that two parameters can timease of aniss, R; contacts routers in itshop neighborhood
the desired operating region: maximum number of duplicattssee if any of them hag; this is thecooperation policy. We
for each content itemK) and the radius for cooperation)( call the set of all routers located at moshops away from

To improve BHR, a cooperation policy covering a largé?; as thesearchable set of ?;, denoted bySs. If f; is stored
radius enhances network storage utilization by reducireg thh S, it is retrieved toR; from the closest router (if multiple
number of duplicateschche diversity in [6]). However, large- roufers holdingf;) and forwarded to the user. L&; cp be
scale cooperation causes communication overheads andtf set of all routers on the path between a leaf rofteand
creases intra-ISP traffic because requests may be redire¢te CP (excluding the CP). If no router &f stores the item,
many times. Despite efforts in designing a cooperation pdhe request is routed to the next routerRn ¢ p and searched
icy [7], [8], [1Q], a proper model for its impact on BHR andthere as well as in the new searchable set; there may be pverla
FPR is still missing. We characterize cooperation policyitby between searchable sets of two neighboring routers, dépmend
search strength] and capability of reducing duplicate&§. onr. We define thereachable set of a router denoted b}
We show how different and K values lead to different trade-as the set of all routers in the searchable sets of routers in
offs between BHR and FPR, and discuss their implication. R cp. If no router inS; has f;, it is downloaded from the

There is considerable interest in exploiting topologiaalp CP and routed to the user following the backward path.
erties in cache networks. Initial efforts J11], [12] indiea
centrality as a promising metric, but questions like how to
measure the topological impact on performance and mecta-Cooperation Policy Design
nism of the interplay between topology, and caching stgateg Performance of a cooperation policy is determined by
still remain open. We use a cache cooperation policy to @mumontents in the searchable set which is a functionr.of he
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diversity of contents cached in this set increases cachitige routers not irS; are not reachable from this edge router,
efficiency which then calls for a caching scheme avoidinge setc;, = o if R, ¢ S}. For harmony of notation, we
duplicate copies in the set|[8].][9]. However, popular cahtere-define the content distribution B¢ = [} ; ;] (and dropt
may better be cached in multiple routers to be more accessitflwe do not refer to a specific timellop is formulated as:
from all network edge routers. We model this tradeoff with

parameter X' which is the maximum number of content N L M+1 L
replicas in the network. In rgahty every file would havg itSmin ZZ Sipicj,k:vfg}kxﬁf;}ﬁrsupuZ Z cj,kxfﬁk
own maximum number of copies which emerges automatically i=1 j=1 k=1 =1 VRpe
if r is fixed; we use a fixed< to illustrate system behavior SURM+1
across the whole parameter range. Using these two paranetef. Cache capacity constraints: 1)
we name a cooperation policy with parametéfsandr as N
(K, r)-Cooperation Policy which can be classified into four as » _ s;z} ; jaith+s,alll (12l ; )<Cj,VR; € S (2)
follows: i=1
1) Type I, small r, small K: Weak cooperation due to & 41
limited access to other caches and limited availability OE sit;;;<Cj,VR; & S @)
popular content; the system is not using all its resource$:*
2) Type Il,small r, large K: This is en-route caching. The . . o 1 .
most popular content is pushed to the network edge. Maximum replica constramg Ty S KV )
3) Type lll, large r, small K: Network storage is effec- o i =t 1 )
tively a single cache. Popular content is in network corE€2sibility constraintsz; 3 < a;}, Vi, Vk ®)
4) Type IV,large r, large K: Strong cooperation. BHR and a:f“;lj =z, Vi,VR; ¢S (6)
FPR cannot be improved at the same time since caching M1
system is fully-utilized and reaches its Pareto frontier.Service constraintl < Z xftlk Vi,Vj,Vk € L (7)
The complexity of cooperation can be calculated via com- =1
munication and computation overhead [8]. Initially, aluters  Availability constraint:z{ ., ., =1 Vi. (8)

exchange their set of stored contents with routers in their o )
searchable set. Assuming that each content is unit size &N¢f objective[(ll) calculates the cost of serving user reigues

dropping the router index, this initialization step regsir OVer all the edge routers and minimi;es this cost by favoring
O(MC|S¢|) messages and results (1 2C) message ex- the most popular files. Note that if;;; = 1, then f;
changes in the worst case. Upon a change in the cache d% tored inR;. Cache capacity constraints in (2) and [3)
router, this router informs all its-hop neighbours about the€nsure the total size of items to be stored in a routers
evicted and admitted items. This per change announcem@fghe cannot exceed cache capacity. Only routerS ran
requires O(|S°|) message in the worst case. In terms d;ongder putting the rgqugsted iteffy into their _caches.
computation, the cooperation does not involve any proogssiMaximum replica constraint in (@) ensures that an item can
rather than discovering which of the replicas is closest toh@ve maximumk replicas in the network. Note that by

specific router. Therefore, computation overheadisse|). ~ rémoving this constraint, system can figure out optidvalor
each neighborhood automaticalkeasibility constraint in ()

B. Optimal Caching under (K, r)-Cooperation Policy reflects f; being retrievable fromR;, only if R stores f;
Assume a centralized entity deciding which items are storachereas[() states that contents cached by routers tim
at each routeR?; when a user requests itefy) at timet. This not changeService constraint in (7)) forces the content to be
entity knows the content distributiok’ = [z} ;] wherez! ; is  served from some location (i.e., local cache, another risute
1if f; is stored at node?;, and zero otherwise. An optimalcache, or the CP) whilavailability constraint in (8) ensures
caching strategy({opr) determines whether to cachfg in that all items are available from the CP. Decision variables
the routers between the edge roufgrreceiving the request are binary, i.e.,z; ;r» € {0,1}. Copr is an integer linear
and routerRy,;; storing f,, and which items to evict in case ofprogramming problem which can be solved with optimization
full cache occupancy. We refer the set of all these interatedi software for small instances of the problem but it requires

nodes on the path betwedt) and R;,;; asS. low-complexity distributed schemes for large scale neksor
CopTt Minimizes the total cost of serving user requests Bife leave distributed solutions for future work.
exploiting its knowledge of current content distributih, file Let F; = {u;1,u;2,u;3...} be the list of user requests

popularities p), and file size ;) information. Letc; , denote arriving at leaf router?; wherew;; is the ™ request for a
the cost of downloading one byte &; from R,. An item file with sizes,,, ,. R; can retrieve it only from its reachable
can be served from edge routhy or retrieved from another setS; which is defined as

router R, including the CP. Let our decision variab&@j;}k be

1if R; downloadsf; from Ry. The cost function reflects the

distance between the two entities and can be calculated usin s= U sk 9)
shortest path algorithms. For a (K, r)-Cooperation Polasy, Rk€Rj.cp



. o A P
. A request W|II be counted as hit if a’F Ieas.t one of the routers B anc’easeK
in S7 stores it. More formally, we define hit functiaf) ; for N © increase r

requestu;; (assumingu;; is a request forf;) as follows: [ | T~ T, ® (typem)
. -
5= {1 if ZRkesjr Tig > 1 "i
0o ol
Next, we calculate BHR as follows: ® c
L
Z i1 Zv - cF. Su; i(sj,i
J uj,i €F; 3 ) . @

BHR === (10)

Zj:l ZVuj JEF; Suj; Footprint Reduction
If requestu;; is served from a router that is;; hops away Fig. 1: Conflicting BHR and FPR at the Pareto frontier. Type
from the user and the path froR, to the CP isH; hops long, of cooperation at different points shown on right.

we can compute the FPR as follows:

L
Z]:l ZVujﬂ;eFj Su_‘i,ihjwi

cooperation policy balances BHR and FPR. Liadg3 and AC'

FPRE=1- Zle HiS v e r Suj (11) are not parallel to the x- and y-axis, since changing eittier o
peme T r or K affects both BHR and FPR, as we show below.
IV. NUMERICAL ANALYSIS The upper graph in Fig.2a shows how BHR and FPR vary
A. Setup & Metrics as we move along the segment$, BC, andC' A, by varying

We performed numerical evaluation on realistic and sy#-2nd k. Starting fromA and moving clockwise (left to right
thetic topologies. Realistic topologies are frof][13], ant® the figure), we increase the search _r_adlus which improves
synthetic topologies are scale-free networks of 50 nodash E BH_R, but decreases FPR due to addl_t|0na_\l sear_ch traffic or
node can store 25 objects. We present results on synth&@iting content be cached at routers with highey in (LT).
networks; realistic topologies produce similar resultsnent FromB to C, along the Pareto frontier, we observe the tradeoff
popularity is modeled according t¢_[14], and content sdetween BHR and FPR, with FPR reaching its maximum at
contains 5000 objects. We calculate the betweenness ligntrd’- From €' to A, 7 is 0 so the system reduces to en-route
(C) of each router in order to analyze its impact on cach&®ching where larger number of copies (n€qris beneficial,
content in a specific router under vario(,r) pairs. We hence as we move towards both BHR and FPR decrease.
define coupling factor (CPF) as the Pearson correlation befig- (2B shows heatmaps of CPF, BHR, and FPR as function
tweenC and average popularity per bit in a node’s cach& K andr. Lighter valugs indicate h|gher values. !t s_hows
it measures topological impact on system performance. THew BHR and FPR conflict each other, i.e., one achieving the
rationale is that optimal system performance is achieved Bighest performance while the other has the worst, in region
placing content at specific locations in a network according orresponding to the Pareto frontier.
its popularity and thaCp is a good metric to characterize a-
node’s position in a graph. Strong correlation betweenlee t
indicates that content is tightly “coupled” with topologmca  The lower plot in Fig[Za shows how CPF evolves along the
topo|ogica| properties influence system performance_ same path. Values close to -1 or 1 indicate strong dependence

In the simulations, 30% of the edge routers are randonidgtween popularity and betweenness. A router with a bigh
selected and connected with client, and the server randoriiyn or close to the core of the network whereas a router with
connects to one of the 5 core nodes with high@st Exper- low Cp is close to the network edge. A%, where CPF is

. Coupling Content and Topology

iments were repeated at least 50 times. close to 1, popular content is in nodes with high, i.e., the
) core, whereas ab', where CPF is close to -1, it is at the edge
B. Pareto Frontier whereCj is low. Along the Pareto frontieBC, we observe a

Fig. [ shows howK andr impact caching performance.“migration” of content from core to edge. Ap where CPF is
The solution toCopr provides the optimal cache profiles for0, both BHR and FPR are close to halfway point between their
given K andr (e.g., pointA in Fig.[), but it does not indicate respective minima and maxima BtandC'. We have observed
the best values for these two parameters, i.e., we can iraprdiis phenomenon across a wide range of experimental sgtting
performance by tunind< andr, because the system may bdut its full investigation is left for further study.
underutilized. However, our optimization model can be usedFig.[3 shows cooperation policy’s impact on content place-
to find Pareto frontier of the performance (green &€ in ment along the Pareto frontié&?C. Point B (Fig.[3a), repre-
Fig.[). When we reach the Pareto frontier, we cannot improsenting Type Il cooperation favors BHR and places content
BHR or FPR without hurting the other. The fan-shaped aréa the core. PointD along BC' (Fig. [3B) strikes a tradeoff
defined byABC is the area which a cooperation policy cametween BHR and FPR and the content is neither in the core
explore to find the best tradeoff betweéh and ». Point D nor on the edge; this is Type IV cooperation. Finally, pdint
where we eventually reach the Pareto frontier depends on h(wig.[3d) favors FPR and pushes popular content to the edge.
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(a) Change in BHR (Top plot, left y-axis), FPR (top, right ¥is3, and CPF (bottom) alongl B, BC, and (b) CPF, BHR, and FPR as a
CA. function of K andr.

Fig. 2: Performance of K, rr)-Cooperation along the boundary defined by ABC (a), and fo(Zl r) pairs (b).
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Fig. 3: Content placement at poinis D, andC'. Red color (dark dots) marks the most popular content. Nedegrouped
in circles according t@'sz. Content migrates from core to edge as we move fidrto C.

D. Implications V. CONCLUSION

Our results have profound implications on relationship \\e modeled cache cooperation by its search radius and

between cooperation policies, content popularity, andoe¢

tolerance of duplicates. We performed a thorough numerical

topology. They also give us hints on when and how topologicghalysis and showed that cooperation policy pushes system
properties should be taken into account in caching strateégyrformance to its Pareto frontier, and how it couples aunte
design. We summarize the main implications as follows: \iih topology. We proposed a way to measure impact of

1)

2)

3)

4)

5)

Cooperation policy pushes performance to Pareto froimpology on system performance. We show when and how
tier and couples content popularity and topological propepological information should be taken into account in in-
erties together. How and where it falls on the frontiemetwork caching strategy design.
depends on how it balances BHR and FPR.
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