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On the Cognitive Interference Channel with Causal
Unidirectional Destination Cooperation
Fernando Reátegui, Hossein Peyvandi, Muhammad Ali Imran and Rahim Tafazolli

Abstract—In previous works the cognitive interference channel
with unidirectional destination cooperation has been studied. In
this model the cognitive receiver acts as a relay of the primary
user’s message and its operation is assumed to be strictly causal.
In this paper we study the same channel model with a causal
rather than a strictly causal relay, i.e. the relay’s transmit symbol
depends not only on its past but also on its current received
symbol. We propose an outer bound for the discrete memoryless
channel which is later used to compute an outer bound for the
Gaussian channel. We also propose an achievable scheme based
on instantaneous amplify-and-forward relaying that meets the
outer bound in the very strong interference regime.

Index Terms—Cognitive Interference Channel, Causal Unidi-
rectional Destination Cooperation.

I. INTRODUCTION

THE cognitive interference channel (CIC) [1] is a model
for unidirectional cooperation at the transmitters. In this

model two transmitter-receiver pairs interfere with each other
and one transmitter has non-causal knowledge of the message
being sent by the other transmitter. This knowledge, referred
here as cognition, is appropriately utilised by the correspond-
ing encoder in order to apply sophisticated techniques with
the aim of increasing the overall rate region. This model has
been inspired by applications in mobile communications and
sensor networks. In the former, a cognitive radio has special
capabilities such that he can utilise the same spectrum as
the licensed user [2]. In the latter, two sensors have different
sensing capabilities that originate a degraded structure of the
messages that need to be communicated. This structure permits
the transmitters to cooperate [3].
On the other hand, it has been shown in the literature that
cooperative communications can improve the achievable rate
regions of several channel configurations. Recently in [4] and
[5], the CIC is adapted to have unidirectional cooperation at
the receivers (CIC-UDC). The cognitive receiver acts as a
strictly causal relay and helps to convey the primary user’s
message. In this paper we extend this setting and assume
that the relay operation is causal rather than strictly causal,
i.e., the relay’s transmit symbol depends not only on its past
received symbols, but also on its current received symbol.
We name this model the CIC with causal unidirectional
destination cooperation (CIC-CUDC). This is a good model
for studying amplify-and-forward (AF) type relaying if the
overall delay spread including the path through the relay is
much smaller than the inverse of the bandwidth. We provide
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Fig. 1. The discrete memoryless CIC with causal unidirectional destination
cooperation. The cognitive transmitter is denoted with the subscript 1. The
cognitive receiver acts as a relay.

an outer bound for the discrete memoryless (DM) channel.
For the Gaussian channel we provide an achievable scheme
that utilises instantaneous AF at the relay. We show that this
simple encoding scheme is capacity achieving when the model
operates in the very strong interference (VSI) regime. The
rest of the paper is organised as follows. The notations and
definitions are in Section II. An outer bound to the capacity
region of the discrete memoryless CIC-UDC is provided in
Section III. We establish the capacity region for the Gaussian
channel in Section IV. We conclude the paper in Section V.

II. NOTATIONS AND DEFINITIONS

A. Notations

The notation of [6] is utilised throughout the paper. Lower
case letters (e.g. x, y) are used to denote values of random
variables. Upper case letters (e.g. X,Y ) denote random vari-
ables. A sequence of random variables (Xi, ...Xj) is denoted
by Xj

i , for 1 ≤ i ≤ j. When i = 1 the subscript is dropped
Xj = (X1, ..., Xj). The probability mass function (pmf) of a
random variable (RV) X is denoted by pX(x). We often drop
the subscript when the pmf is understood from the context, e.g.
p(x). The entropy (differential entropy) of a RV and mutual
information between two RVs are indicated by H(·) (h(·))
and I(·; ·) respectively. The capacity function is defined as
C(x) = 1/2 log(1 + x) where the logarithm is to the base 2.

B. Definitions

Definition 1. The discrete memoryless CIC-CUDC consists
of three finite input sets X1, X2, X3, two finite output sets Y1,
Y2, and a probability transition function p(y1, y2|x1, x2, x3).
It is depicted in Fig. 1.

Definition 2. A (2nR1 , 2nR2 , n) code for the discrete memo-
ryless CIC-CUDC consists of a pair of uniformly distributed
messages M1 ∈ [1 : 2nR1 ] and M2 ∈ [1 : 2nR2 ], two
encoding functions at the transmitters Xn

1 = f1(M1,M2),
Xn

2 = f2(M2), an encoding function at the relay X3i =



2

h211(1− ρ2)P1 ≤ P1

(
h221(1− ρ2) + h211h

2
23(1− ρ2)α2 + 2h11h21h23(1− ρ2)α

)
/
(
1 + h223α

2
)
, (3a)

h221P1 + 2h23α(h11h21P1 + h12h22P2) + 2h21h22ρ
√
P1P2

+2h23αρ
√
P1P2(h12h21 + h11h22) + h222P2 ≤ h211P1+2h11h12ρ

√
P1P2 + h212P2 (3b)

f3i(Y
i
1 ) and two decoding functions M̂t = gt(Y

n
t ), for

t = 1, 2. The average probability of error is defined as
P

(n)
e = P (

⋃
t{M̂t 6= Mt}

⋃
{M̃2 6= M2}). A rate pair

(R1, R2) is said to be achievable if there exists a sequence
of (2nR1 , 2nR2 , n) codes such that limn→∞ P

(n)
e = 0. The

capacity region of the discrete memoryless CIC-CUDC is the
closure of the set of all achievable rate regions. We assume
that the channel is memoryless, i.e., (Xi−1

1 , Xi−1
2 , Y i−1

1 ) →
(X1i, X2i) → Y1i, and (Xi−1

1 , Xi−1
2 , Xi−1

3 , Y i−1
1 , Y i−1

2 ) →
(X1i, X2i, X3i, Y1i)→ Y2i, form Markov chains.

III. THE CIC WITH CAUSAL UNIDIRECTIONAL
DESTINATION COOPERATION

We first propose an outer bound for the discrete memoryless
CIC-CUDC.

Theorem 1. The capacity region of the discrete memoryless
CIC with causal unidirectional cooperation at the receivers is
contained in the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y1, X3|X2), (1a)
R1 +R2 ≤ I(X1, X2;Y1, X3), (1b)
R1 +R2 ≤ I(X1, X2;Y1) + I(X1, X2;Y2|Y1, X3), (1c)

for some p(x1, x2)p(x3|x1, x2, y1).

Proof. See Appendix A.

We treat the Gaussian channel in the next section.

IV. THE GAUSSIAN CIC WITH CAUSAL UNIDIRECTIONAL
DESTINATION COOPERATION

In the Gaussian channel the relay node (receiver 1) is
equipped with one antenna for reception and another one for
transmission. The antennas are isolated, therefore they do not
interfere with each other. The channel model is described by
the following set of equations:

Y1 = h11X1 + h12X2 + Z1,

Y2 = h21X1 + h22X2 + h23X3 + Z2, (2)

where hkl is the channel coefficient from transmitter l to
receiver k for k = 1, 2 and l = 1, 2, 3. The signal transmitted
at receiver 1 is denoted by X3. Zk ∼ N (0, 1) are zero-mean
unit-variance Gaussian noise. The average power constraints
at the three transmitters are P1, P2 and P3 respectively.

A. The Gaussian CIC with causal unidirectional destination
cooperation in very strong interference

Definition 3. The relay in the Gaussian CIC-CUDC operates
on instantaneous amplify-and-forward relaying, X3 = αY1,
where α is the amplification factor.

Definition 4. A Gaussian CIC with causal unidirectional
destination cooperation is said to be in the very strong inter-
ference regime if (3) holds, where ρ ∈ [0, 1] is the correlation
coefficient between X1 and X2.

Theorem 2. The capacity region of the Gaussian CIC with
causal unidirectional destination cooperation in very strong
interference is given by the set of (R1, R2) such that

R1 ≤ C
(
h211(1− ρ2)P1

)
, (4a)

R1 +R2 ≤ C
(
h211P1 + 2h11h12ρ

√
P1P2 + h212P2

)
. (4b)

Proof. Achievability: Achievability follows by instantaneous
AF at the relay, i.e., X3 = αY1. Substituting this in (2) we
obtain:

Y1 = h11X1 + h12X2 + Z1,

Y2 = (h21 + αh11h23)X1 + (h22 + αh12h23)X2

+ αh23Z1 + Z2. (5)

As we are studying the very strong interference regime, the
equivalent CIC in (5) is in VSI, i.e., the conditions in [7] hold:

I(X1;Y1|X2) ≤ I(X1;Y2|X2), (6a)
I(X1, X2;Y2) ≤ I(X1, X2;Y1). (6b)

As both receivers decode both messages, from the left hand
side (LHS) of (6a) the bound on R1 in (4a) can be obtained.
The LHS of (6b) depends on the amplification factor α. The
value of α that maximizes the sum rate (LHS of (6b)) makes
I(X1, X2;Y2) ≥ I(X1, X2;Y1) for all values of channel
gains, namely we are out of the very strong interference
regime. This can be observed in Fig. 2. In the figure, when
α = αopt the LHS of (6b) (LHS2) is at its maximum. The
value of α for which the LHS and the right hand side (RHS)
of (6b) equalize is denoted by αeq .

Therefore we need to compute the value of α such that
we attain the maximum sum-rate without leaving the very
strong interference regime. The value of α such that the LHS
and RHS of (6b) are equal is computed to be αeq = N

D
where N = h211P1 + 2h11h12ρ

√
P1P2 + h212P2 − (h221P1 +

2h21h22ρ
√
P1P2 + h222P2) and D = 2h23(h11h21P1 +

(h11h22 + h12h21)ρ
√
P1P2 + h12h22P2). With α = αeq , the

RHS of (6b) can be attained, which constitutes the bound on
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Fig. 2. The sum rates as functions of the relay amplification factor for h11 =
h22 = h23 = h21 = 1, h12 = 4, ρ = 0.5 and P1 = P2 = 1.
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Fig. 3. Comparison of very strong interference regimes for the CIC and the
CIC-CUDC for h11 = h22 = h23 = P1 = P2 = 1.

the sum-rate in (4b). Fig. 3 shows the VSI regime for our
model. This analysis assumes that αeqy1 ≤ P3. A relay with
such characteristic is known as a potent relay [8]. Converse:
We apply bounds (1a) and (1b) of Theorem 1 in the Gaussian
model.

R1 ≤ I(X1;Y1, X3|X2),

= I(X1;Y1|X2) + I(X1;X3|X2, Y1),

= h(Y1|X2)− h(Y1|X1, X2) + h(X3|X2, Y1)

− h(X3|X1, X2, Y1),

(a)
= h(h11X1 + Z1|X2)− h(Z1),

= h(h11X1 + Z1, X2)− h(X2)− h(Z1),

≤ C
(
h211(1− ρ2)P1

)
,

and

R1 +R2 ≤ I(X1, X2;Y1, X3),
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Fig. 4. Capacity region comparison between the CIC-CUDC in VSI against
the CIC in weak and VSI. For the CIC, h11 = h22 = P1 = P2 = 1,
h12 = 3, h21 = 2 (VSI) and h21 = 0.5 (Weak Int.). For the CIC-CUDC in
VSI, h11 = h22 = h23 = P1 = P2 = 1, h12 = 3.

(b)
= I(X1, X2;Y1),

= h(Y1)− h(Y1|X1, X2),

= h(h11X1 + h12X2 + Z1)− h(Z1)

≤ C
(
h211 + 2h11h12ρ

√
P1P2 + h212P2

)
,

where (a) and (b) follow as X3 = αY1.

It can be noted in Fig. 3 that the VSI region for the
CIC-CUDC comprises the VSI region and part of the weak
interference region of the CIC. This also indicates that only
one and not two encoding schemes are necessary for much
of the interference regimes for which capacity is known. We
can also compare the capacity region of our model, the CIC-
CUDC with that of the CIC in weak and VSI. Fig. 4 depicts
this comparison. Note that the capacity region of the CIC-
CUDC in VSI does not depend on the value of h21 and as
long the channel is in this regime the relay compensates any
loss in the rate by making α = αeq for any variation of the
channel gains. The variation of αeq with respect to h21 is
depicted in Fig. 5.

V. CONCLUSIONS

We introduced the cognitive interference channel with
causal unidirectional destination cooperation. We presented
an outer bound for the discrete memoryless channel. For the
Gaussian channel we showed that instantaneous AF relaying
is sufficient to attain the capacity region in the very strong
interference regime. We compared the very strong interference
regime region of our model with those for the weak and
VSI for the CIC. We observed that in our model the VSI
region is enlarged allowing the utilization of only one encoding
scheme rather than two, as in the CIC, for more values of the
channel coefficients. We also compared the capacity regions
and showed that the region of the CIC-CUDC does not depend
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Fig. 5. The relay gain αeq vs. the channel coefficient h21. The values utilised
for h21 in Fig. 4 are marked with circles.

on h21, whereas the capacity region of the CIC has a strong
dependence on it.

APPENDIX A
PROOF OF THEOREM 1

From Fano’s inequality [6]

n(R1 − εn) ≤ I(M1;Y
n
1 |M2), (7)

n(R1 +R2 − εn) ≤ I(M1,M2;Y
n
1 ), (8)

n(R1 +R2 − εn) ≤ I(M1,M2;Y
n
1 , Y

n
2 ). (9)

Due to the lack of space we avoid the dependence on εn in
the following. From (7)

nR1 ≤
n∑

i=1

I(M1;Y1i|M2, Y
i−1
1 ),

=

n∑
i=1

H(M1|M2, Y
i−1
1 )−H(M1|M2, Y

i−1
1 , Yi),

=

n∑
i=1

H(M1|M2, Y
i−1
1 )−H(M1|M2, Y

i−1
1 , Yi, X3i),

=

n∑
i=1

I(M1;Y1i, X3i|M2, Y
i−1
1 ),

=

n∑
i=1

I(M1,M2, Y
i−1
1 , X1i;Y1i, X3i|X2i),

(a)
=

n∑
i=1

I(X1i;Y1i, X3i|X2i).

From (8), n(R1 +R2)

≤
n∑

i=1

I(M1,M2;Y1i|Y i−1
1 ),

=

n∑
i=1

H(M1,M2|Y i−1
1 )−H(M1,M2|Y i−1

1 , Y1i),

=

n∑
i=1

H(M1,M2|Y i−1
1 )−H(M1,M2|Y i−1

1 , Y1i, X3i),

=

n∑
i=1

I(M1,M2;Y1i, X3i|Y i−1
1 ),

≤
n∑

i=1

I(M1,M2, Y
i−1
1 , X1i, X2i;Y1i, X3i),

(b)

≤
n∑

i=1

I(X1i, X2i;Y1i, X3i).

And from (9), n(R1 +R2)

≤
n∑

i=1

I(M1,M2;Y1i, Y2i|Y i−1
1 , Y i−1

2 ),

=

n∑
i=1

I(M1,M2;Y1i|Y i−1
1 , Y i−1

2 )

+

n∑
i=1

I(M1,M2;Y2i|Y i−1
1 , Y1i, Y

i−1
2 ),

=

n∑
i=1

I(M1,M2, X1i, X2i;Y1i|Y i−1
1 , Y i−1

2 )

+

n∑
i=1

I(M1,M2, X1i, X2i;Y2i|Y i−1
1 , Y1i, Y

i−1
2 , X3i),

(c)
=

n∑
i=1

I(X1i, X2i;Y1i) +

n∑
i=1

I(X1i, X2i;Y2i|Y1i, X3i),

where (a), (b) and (c) follow from the memoryless property of
the channel. The rest of the proof is customary and follows by
introducing a time-sharing random variable Q, uniformly dis-
tributed in [1 : n] and independent of (M1,M2, X

n
k , X

n
3 , Y

n
k )

for k = 1, 2 and defining Xk = XkQ and Yk = YkQ.
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