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Abstract

This letter presents an optimal control framework to reduce the spread of viruses in networks. The 

network is modeled as an undirected graph of nodes and weighted links. We consider the spread of 

viruses in a network as a system, and the total number of infected nodes as the state of the system, 

while the control function is the weight reduction leading to slow/reduce spread of viruses. Our 

epidemic model overcomes three assumptions that were extensively used in the literature and 

produced inaccurate results. We apply the optimal control formulation to crucial network 

structures. Numerical results show the dynamical weight reduction and reveal the role of the 

network structure and the epidemic model in reducing the infection size in the presence of 

indiscernible infected nodes.
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I. Introduction

Biological epidemiology has produced significant number of deterministic and stochastic 

models, which have been successful in providing insights and deep understanding of the 

epidemic process phenomenon leading to successful conclusions about prevention and 

prediction of spread of viruses. Epidemic modeling has been applied also to describe packet 

routing using epidemic models [3], [4] and to evaluate the spread of viruses in computer 

networks [1], [2]. However, in the literature, when intervention strategies are applied in the 

network, there are three primitive assumptions producing inaccurate modeling results. The 

first assumption is the homogeneous mixing assuming that all the nodes have the same 

expected communication degree neglecting the connectivity variation among the nodes [11], 

[8]. The second assumption is the static network connectivity. As a matter of fact, during the 

spread of a virus, connectivity patterns among healthy nodes and infected nodes are altered, 

and these alterations in turn modify the epidemic evolution. The two intertwined dynamic 

processes, the one related to the epidemic spreading and the other related to the network 
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connectivity adaptation, act together and impact the infection size. The third assumption is 

the detection of infected nodes. Many approaches in the literature assumed that every 

infected node shows infection symptoms neglecting the fact that symptoms can be 

indiscernible in some infected nodes. In the literature, some models fall into the three 

assumptions such as [5], [6], [9], [10], [12]. Therefore, a major challenge regarding the 

problem of optimal contact reduction is the assumption of observability of the infection 

status of neighbors. Not only privacy constraints, but also the lack of detectable symptoms 

leads to increase the infection size due to the indiscernible infection force from the 

asymptomatic infection, i.e. without showing infection symptoms. Thus, the assumption that 

the infection is always detectable can lead to extra contact reduction between the infected 

node and the susceptible neighbor node and in turns the incurred contact reduction cost 

increases. Therefore, quantifying the effect of the assumption that all the infected nodes are 

always detected given the real scenario that some infected cases can not be detected 

becomes a mandatory task. In this letter, we present an intervention technique for the spread 

of epidemics in networks that avoid the three assumptions. The new intervention is based on 

the optimal control theory which is applied to Susceptible-Infected-Recovered SIR 

epidemiological model. In the SIR model, a susceptible node becomes infected due to the 

contact with infected neighbor(s). To address the hidden infection, an infected node 

becomes either symptomatic infected - infection symptoms are observable - or 

asymptomatic infected - infection symptoms are indiscernible- with asymptomatic 

probability. After contracting the infection, infected nodes permanently recover from the 

infection with a given cure rate. The main objective is to minimize the infection cost and the 

intervention cost. In our case, the intervention represents the optimal reduction in the contact 

weight applied between susceptible nodes and infected nodes showing symptoms. The 

contact weight represents the contact frequency and link availability between two nodes. 

Unlike the trivial methods in which infected nodes are isolated due to intervention such as 

quarantine intervention, the new approach preserves a global minimum communication level 

for every contact/link. In addition, the optimal control formulation addresses the trade-off 

between minimization of total infected nodes and minimization of contact weights 

reduction. Differently from the literature, our approach considers the network structure when 

the optimal control theory is applied to the epidemic model. The epidemic model, the mean-

field approximated model for the general Markovian connectivity and the dynamic rate 

reduction for intervention purpose have been considered in the literature. For instance, the 

application of classical optimal control theory for the networked epidemic model was first 

introduced in [6]. However, the modeling contribution is to integrate the mean-field 

approximated model with an asymptomatic state within an optimal control framework 

aiming to reduce the final expected number of infection. This model reflects the spread of 

viruses in computer networks where infected nodes with anti-viruses that detect the threats 

are symptomatic, while infected nodes with anti-viruses, which can not detect the threats, 

are asymptomatic. Thus, asymptomatic infection has longer lifetime than symptomatic 

infection. This model has many applications in epidemic routing scheme. It can be used to 

estimate the failure rate/malfunction of routers in the networks by estimating the 

asymptomatic infection parameters through collected data about packets routing and the 

time delay for a packet to reach the destination end system. It also can be used for multipath 

routing to guarantee certain quality-of-service [7] by tuning some nodes to act as 
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asymptomatic nodes. We numerically evaluate the new approach under three different 

scenarios: 1) non-intervention scenario, 2) intervention scenario assuming the infection is 

always observable and 3) intervention scenario only for the symptomatic infected nodes. 

The numerical evaluations show that the assumption that all infected nodes are detectable 

leads to extra reduction in contact weights, which is less investment because nodes 

extensively reduce the communication for longer time period.

II. Network-based SIR approach

The Networked SIR model [8] is mainly composed of susceptible, infected and recovered 

states. We divided the infected state into two states, symptomatic infected and asymptomatic 

infected as shown in Figure 1. The spreading mechanism is a stochastic process, which is 

modeled through continuous-time Markov chain. Given a network with N nodes, there are 

4N states that describe the network states during the spread of viruses; However, the mean 

field theory can be employed to reduce the complexity from exponential O(4N) to 

polynomial O(N). Therefore, instead of considering the combinatorial states of the nodes in 

the network, we study each node separately [11] by decomposing the infinitesimal Q4
N × 4N 

matrix to N infinitesimal matrices, each with four states Sm, ,  and Rm as follows:

where . All the variables and parameters are 

summarized in table I. In this approach, we replace the actual event of a node to be 

susceptible sm(t) = 1, asymptomatically infected , symptomatically infected 

, recovered  with their effective probabilities Sm(t) = p(sm(t) = 1), 

, , and Rm(t) = p(rm(t) = 1), respectively. 

Replacing every event with its effective probability is basically a mean field approximation. 

Hence,  in the effective  infinitesimal matrix. For 

every node m, we derive a system of differential equations using the effective 

infinitesimal matrix  where 

 is the vector of the state probabilities of 

node m. The system of differential equations for node m is as follows:

(1)

(2)
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(3)

We only solve 3N simultaneous differential equations.

III. Optimal control problem

We formulate a continuous time optimal control problem to minimize the total infection size 

by optimally reducing the contact weights among nodes within a finite time interval t ∈

[0,Tf]. Initially, we assume that there is no weight reduction in the network 

 where  is the normal weight value between node m and node n. 

When a virus invades a network at t > 0, weights are reduced from their initial values 

. In particular, we impose two bounds on each link weight (m, n): a) 

and b) , where is α global minimum connectivity coefficient. These 

constraints have direct implications for the network as follows: First, to preserve a minimum 

contact level among nodes even during the spread of viruses, we introduce a positive lower 

bound for the weights,  where 0 < α < 1. Second, the level of contact 

between two nodes cannot increase beyond the normal level  whenever a virus 

invades the network. Weight reduction process only takes place between a symptomatic 

infected node and a susceptible node since there is no infection symptom that enforces the 

weight reduction between asymptomatic infected nodes and susceptible nodes. Thus, the 

contact weight between an asymptomatic infected node and a susceptible node remains 

constant with normal value . Mathematically, for every node m, the susceptible 

probability Sm(t), the symptomatic infection probability , and the asymptomatic 

infection probability  are the state variables, while the weight reduction 

 is the control function. The objective function is given by the sum of the 

weight reduction cost function, and the total expected new infection size as shown in the 

following equation:

(4)

where the first term f(.) is a non-negative strictly convex function representing the weight 

reduction cost, while the second term represents total expected new infection cases at time t. 

Moreover, the differential equations describing the state evolutions and the weight 

inequality are as follows:

(5)

(6)
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(7)

In differential equations 5-7, we emphasize that there is no weight reduction process when 

an asymptomatic infected node is in contact with susceptible node and the contact weight 

remains constant . Hamiltonian methods and Pontryagin's minimum principle are 

applied to different optimization problems for epidemiological models to determine the 

explicit optimal control function and the optimal state variables. Therefore, we apply 

Pontryagin's minimum principle and we derive the Hamiltonian function H as follows:

The co-state equations are derived by evaluating ,  and . The equations of the 

transversality conditions are equal to 0. Next, the optimality condition is 

 where w* m,n is the optimal weight value 

at time t such that  is minimized. Let  represents 

the weight reduction such that . After substituting the Hamiltonian 

Eq. (8) in the optimality condition, we obtain the following inequality:

(8)

where . Since ym,n = 0 is an admissible point 

and f(ym,n = 0) = 0, therefore, the following inequality holds for all time t:

(9)

Theorem: For every link (m, n), the optimal dynamic weight reduction  is as follows:

(10)

Proof : For every link (m, n) in Eq. (10),  is evaluated to 

find the optimal . Therefore, we obtain . Since inequality (10) 
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has to be preserved for all time t, y*m,n is applied if and only if 

 is true. Also, y*m,n equals its upper bound 

 if . Hence, y*m,n and consequently 

 are obtained.

IV. Numerical evaluation

We apply two different network structures for numerical evaluation. The network structures 

are a complete network and star network. Each network has five nodes. We numerically 

evaluate the final number of recovered nodes in each network. For each network, we 

simulate three intervention scenarios for the spread of viruses: 1) non-intervention scenario 

in Eqs. (1-3) with , 2) intervention scenario without asymptomatic 

infection (pa = 0) in Eqs. (5-7) to show the effect of neglecting the asymptomatic infection 

from the model and 3) intervention scenario only for the symptomatic infected nodes in Eqs. 

(5-7). For evaluation purpose, the values of the model parameters are set as follows: ra = 1, 

pa = 0.33, δas = 0.4, δas ≤ δs ≤ 1, , α = 0.1 and  where ρ is the maximum 

eigenvalue of the unweighted undirected network . Also, we set the 

weight reduction cost function in Eq. (4) to be strictly convex . 

The initial conditions are Sm(0) = 0.99, ,  and Rm(0) = 0 ∀m ∈ N. 

For all networks, number of recovered nodes in the absence of the controller 

 is higher than number of recovered nodes when the controller is 

dynamically changing over time. We evaluate both the model that considers the 

asymptomatic infection pa > 0 and the one that does not consider the asymptomatic infection 

pa = 0 (full knowledge of infection). We found that the link weight is more reduced in case 

of SIR model without asymptomatic infection because every infected node is assumed to be 

detected and the corresponding intervention is large e.g. more weight reduction. For SIR 

model with asymptomatic infection, only the symptomatic infected nodes are detected and 

the corresponding intervention is lower than the intervention for the SIR model without 

asymptomatic infection as shown in Figure 2. In addition, number of recovered nodes is 

lower for the SIR model without asymptomatic infection than for the SIR model with 

asymptomatic infection as shown in Table II. We also addressed the tradeoff between the 

total amount of weight reduction and number of infected nodes by evaluating the ratio 

between two quantities. For δas = δs = 1, the tradeoff values for the complete network in case 

of a realistic model and a fully knowledge model are 3.24 and 7.13, respectively. Similarly, 

the tradeoff values for the star network in case of realistic model and fully knowledge model 

are 1.33 and 2.84, respectively. It is not surprising that realistic model has less tradeoff value 

than the fully knowledge model, since the edge weights are not reduced for asymptomatic 

infected nodes in the realistic model. To clarify, the number of infected nodes when the SIR 

model without asymptomatic is considered is less due to the intensive contact weight 

reduction for longer time as shown in Figure 2. Recall that in the SIR model without 

asymptomatic infection, the model assumed that all infected cases are detectable which 

results in larger weight reduction. On the other hand, in the SIR model with asymptomatic 
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infection, the intervention is not applied between asymptomatic infected nodes and 

susceptible nodes because the infection is indiscernible and full contact rate is preserved. 

Finally, the influence of the network structure on the intervention is clearly observed with 

the star network which is highly heterogeneous in comparing with the complete network.

V. Conclusions and future work

In this letter, we presented the adaptive contact weighted networks to minimize a linear 

combination of the total number of infection cases and the weight reduction cost when 

viruses spread in computer networks. We briefly presented the networked SIR approach 

considering both detectable and undetectable infected nodes. The model reflects a realistic 

scenario that the intervention is not applied when a susceptible node has a contact with an 

asymptomatic infected node. Using the numerical evaluation, we found that the assumption 

that all infected nodes are detectable leads to intensive reduction in contact weights for 

longer time. Also, our approach captures the different dynamical weight reduction between 

homogeneous and heterogeneous networks. Our future work will be focused on proposing 

numerical methods to evaluate the optimal control on large complex networks and to 

analyze the sensitivity of the optimal solution to the model parameters.
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Fig. 1. 
SIR model with symptomatic and asymptomatic infections
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Fig. 2. 
Contact weight w(t) of the three scenarios given δas = δs = 1.
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TABLE I

Definitions of parameters and variables

Parameters Definition

Tf,β Final time and infection rate

δs,δas Cure rate for symptomatic and asymptomatic infections

α Global minimum social contact coefficient

ra Infectivity of asymptomatic infection

Pa Probability of a newly infected node is asymptomatic

Variables Definition

wm,n Link weight at time t with initial value w°m,n

Sm (t) The susceptible probability of node m

Ias
m(t) The asymptomatic infection probability of node m

Is
m(t) The symptomatic infection probability of node m
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TABLE II

Number of infected nodes with †as =0.4

Networks and interventions †s=0A 0.6 0.8 1

Complete net. no intervention 5 4.98 4.78 4.34

Complete net. realistic scenario 5 4.94 4.22 3.26

Complete net. infection full knowledge 4.9 4.73 3.74 2.89

Star net. no intervention 4.85 4.47 4.04 3.66

Star net. realistic scenario 4.75 4.18 3.52 2.72

Star net. infection full knowledge 4.68 4.12 3.37 2.49
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