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Abstract—For a wireless multi-tier heterogeneous network with
orthogonal spectrum allocation across tiers, we optimize the
association probability and the fraction of spectrum allocated
to each tier so as to maximize rate coverage. In practice, the
association probability can be controlled using a biased received
signal power. The optimization problem is non-convex and we
are forced to explore locally optimal solutions. We make two
contributions in this paper: first, we show that there exists a
relation between the first derivatives of the objective function
with respect to each of the optimization variables. This canbe
used to simplify numerical solutions to the optimization problem.
Second, we explore the optimality of the intuitive solutionthat
the fraction of spectrum allocated to each tier should be equal
to the tier association probability. We show that, in this case,
a closed-form solution exists. Importantly, our numerical results
show that there is essentially zero performance loss. The results
also illustrate the significant gains possible by jointly optimizing
the user association and the resource allocation.

I. I NTRODUCTION

Multi-tier heterogeneous networks are receiving strong con-
sideration as the means to meet the huge anticipated growth in
traffic demand due to mobile voice, video and wireless data.
Such networks comprise multiple tiers of access points (APs)
where each tier differs in spatial density and transmit power.
Importantly, it is expected that these APs will be deployed in
a non-deterministic manner.

The analysis and design of heterogeneous networks neces-
sitate a tractable model for the random AP locations [1]. One
common 2-D spatial model that captures this randomness is
the Poisson point process (PPP) characterized by only one
parameter,λ, the density of the nodes. In this model, node
locations are independent and the number of nodes in disjoint
regions are independent random variables. Given the density
and assuming a reuse-1 spectrum allocation within each tier,
such networks are interference limited. Using this model, Jo
et al. derived the outage probability and the ergodic rate [2] of
a multi-tier network with flexible tier association. The authors
use the signal-to-interference ratio (SIR) and a pre-specified
threshold to define outage at a reference user independent
of the load and availability of resources at the serving AP.
Estimating the distribution of number of users per AP, this
analysis was extended to derive the downlink rate distribution
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in a multi-tier network [3] and a two-tier network with limited
backhaul capacity [4].

One major issue in modern heterogeneous networks is tier
association. Since the transmit powers of APs in each tier
differ, a max-received signal power criterion would result
in users connecting to the tier with higher transmit power.
Although desirable from the received power point of view,
the achieved rate decreases since each user receives a smaller
fraction of the resources. Therefore, a popular method is to
add, in dB, a chosen bias to the average received power
and use this biased received power as the tier association
metric. The chosen bias controls the tier association proba-
bility. Another issue of importance is dealing with inter- and
intra-tier interference. Two approaches have been proposed: 1)
spectrum sharing among tiers but with different reuse factors
within each [5] or fractional frequency reuse [6]; 2) orthogonal
spectrum allocation among tiers, thereby eliminating inter-tier
interference (spectrum partitioning, e.g., [7], [8]).

In this paper, we consider the latter case of spectrum par-
titioning. We maximize the rate coverage (the complementary
cumulative distribution function (CDF) of the achieved rate)
by optimizing the tier association probability and the fraction
of spectrum allocated to each tier. Optimizing the rate coverage
leads to a non-convex problem, and we obtain the derivatives
with respect to each optimization variable to enable efficient
numerical solutions. We then explore the intuitive case of
setting the tier’s allocated fraction of spectrum equal to the
tier association probability. In this case, we obtain a closed-
form solution for the desired variables. Our numerical results
show that the resulting loss in performance is negligible.

II. SYSTEM MODEL

We consider a network comprisingK tiers in the downlink.
Within each tier, indexed byk, the APs follow a homogeneous
PPPΦk characterized bytPk, λk, Rku respectively denoting
the transmit power of each AP in the tier, the AP density and
the desired rate threshold. The tiers are organized in increasing
order of density i.e.,λ1 ď λ2 ¨ ¨ ¨ ď λK . Users are distributed
in the network according to an independent PPP with density
λu. Given the densityλk, the number of APs belonging to tier
k in areaA is a Poisson random variable with meanλkA, that
is independent of other tiers. The channel between an AP and
a user is modeled as Rayleigh with average power set by the
path loss exponent,α.

The user is associated with the tier with the largest “biased
average power”, i.e., the average received power from the
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potential serving AP in tierk is multiplied by a bias factor
Bk ě 1; the user then associates with the tier with the highest
resulting product. If all the tiers have the same bias factor
(Bj “ 1, @j), the tier association metric is the maximum
received power, hence, maximum SIR criterion (here, referred
to as max-SIR). In calculating the achievable rate at the user,
we assume orthogonal spectrum allocation across tiers with
reuse-1 within a tier. Of the total bandwidthW , tier k is
allocated a fractionwk ď 1. Therefore, for a user connected
to a specific AP in tierk, all other APs in tierk, but tier k
only, act as interferers.

While the tier association is only a function of tier AP
density, transmit power and bias factor [2], the actual achieved
rate is a function of the allocated spectrum and the load (in
terms of the connected users) at each AP. To calculate the
reference user’s share of spectrum, we use theaverage number
of users per AP in tierk given by [2]:

Nk “
Akλu

λk

, (1)

whereAk denotes thekth tier association probability. Another
expression for the average load, considering AP load as a
random variable, is given in [3], [4] as̃Nk “ 1 ` 1.28Akλu

λk
;

this accounts for the reference user and the implicit area
biasing. This higher load will not affect the procedure to derive
the overall rate coverage and formulation of the optimization
problem in Section III. For mathematical tractability, however,
we use (1) to calculate the bandwidth to be allocated to
each user; a comparison with the higher average load will
be presented through numerical simulations. As in [3], [5],
[7], [8], we use the proportionally fair model where each AP
equally divides its available bandwidth amongst its users.The
rate achieved by a user associated with tierk is then given by:

rk “ W
wk

Nk

log2 p1 ` γkq , (2)

wherewk denotes the fraction of spectrum per AP in tierk,
andγk denotes the received SIR at the user associated with tier
k. The user is said to be in coverage if it achieves a threshold
rateRk, i.e.,rk ě Rk. In general,Rk is a function of the tier.

III. PROBLEM FORMULATION

Given a total spectrum ofW , we aim to optimize the tier
association probability, and the spectrum partitioning among
tiers to maximize the overall rate coverage. Using (2), the
probability that the user associated with tierk at connection
distancer receives its rate threshold is given by:

Pprk ě Rk | rq “ PpW wk

Nk
log2p1 ` γkq ě Rk | rq

“ Ppγk ě 2
RkNk
Wwk ´ 1 | rq

paq
“e´πλkr

2ρpτk,αq.

(3)

where τk “ 2
RkNk
Wwk ´ 1 is the SIR threshold given the

rate thresholdRk, and (a) results from the probability of
SIR coverage at connection distancer with ρpτk, αq “

τ
2{α
k

ş8

τ
´2{α
k

1
1`uα{2du [9, Theorem 2].

Having characterized the rate coverage in a single tier with
average load per AP, the probability that the user is in coverage
in a multi-tier network is given by the following Theorem.

Theorem 1. In a K-tier network with orthogonal spectrum
allocation across tiers, and APs in each tier distributed
according to a homogeneous PPP with density λk, the prob-
ability of the rate coverage is given by:

Rc “
K
ÿ

k“1

1

A´1
k ` ρpτk, αq

, (4)

where τk “ 2
RkNk
Wwk ´ 1, and Ak denotes the association

probability to tier k.

Proof: See the Appendix.

A. Optimization Problem

Using the result derived in Theorem 1, the optimization
problem with the objective of maximizing the total probability
of rate coverage can be formulated as:

max
tAkuK

k“1
,twkuK

k“1

K
ÿ

k“1

1

A´1
k ` ρpτk, αq

subject to:
K
ÿ

k“1

Ak “ 1,

K
ÿ

k“1

wk “ 1

Ak ě 0, wk ě 0 k “ 1, ¨ ¨ ¨K.

(5)

Although this optimization problem is non-convex, there isa
relation between the first derivative of the objective function
with respect to each pair of optimization variables which
simplifies the gradient-based schemes to obtain the local
optima. DefiningfkpAk, wkq “ Ak

1`Akρpτk,αq , the equivalent
unconstrained objective function is given by:

LpAk, η, µq “
K
ÿ

k“1

fkpAk, wkq ´ η

˜

K
ÿ

k“1

Ak ´ 1

¸

´µ

˜

K
ÿ

k“1

wk ´ 1

¸

, (6)

where η and µ are the Lagrangian multipliers. The KKT
conditions (in addition to two equality constraints) are:

BfkpAk, wkq

BAk

“ η,
BfkpAk, wkq

Bwk

“ µ @k. (7)

The derivative offkpAk, wkq w.r.t. wk is given by:

BfkpAk, wkq

Bwk

“
´ Bρpτk,αq

Bwk

pA´1
k ` ρpτk, αqq2

, (8)

where
Bρpτk, αq

Bwk

“
Bρpτk, αq

Bτk
¨

Bτk
Bwk

, (9)

Bρpτk, αq

Bτk
“

2

ατk

„

ρpτk, αq `
1

1 ` τ´1
k



, (10)

Bτk
Bwk

“ logp2qp
´RkNk

Ww2
k

q2RkNk{Wwk . (11)

Using (9)-(11) in (8), and2RkNk{Wwk “ τk ` 1, we have:

BfkpAk, wkq

Bwk

“

2 logp2q{α

pA´1
k ` ρpτk, αqq2

„

p1 ` τkqρpτk, αq ` τk

τk

ˆ

RkNk

Ww2
k

˙

.

(12)
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Similarly, the derivative offkpAk, wkq w.r.t. Ak is given by:

BfkpAk, wkq

BAk

“
1 ´ A2

kBρpτk, αq{BAk

p1 ` Akρpτk, αqq2
, (13)

where
Bρpτk, αq

BAk

“
Bρpτk, αq

Bτk
¨

Bτk
BAk

, (14)

Bτk
BAk

“ logp2qp
Rkλu

λkWwk

q2RkNk{Wwk . (15)

Hence,

Bρpτk, αq

BAk

“
2 logp2q

α

„

p1 ` τkqρpτk, αq ` τk

τk

ˆ

Rkλu

λkWwk

˙

.

(16)
Using (16) in (13) results in:

BfkpAk, wkq

BAk

“
1 ´ A2

k
2 logp2q

α

”

p1`τkqρpτk,αq`τk
τk

p Rkλu

λkWwk
q
ı

p1 ` Akρpτk, αqq2
.

(17)
Comparing (12) with (17), we have:

BfkpAk, wkq

BAk

“
1

p1 ` Akρpτk, αqq2
´
wk

Ak

BfkpAk, wkq

Bwk

. (18)

Note that the conditions in (7) imply that any solution to the
optimization problem must satisfy the fixed point equation:

η “
1

p1 ` Akρpτk, αqq2
´

wk

Ak

µ. (19)

However, the complicated relation betweenρpτk, αq and the
variablesAk andwk makes it difficult to derive a closed-form
solution. Hence, we will use (12) and (18) to simplify the
interior-point method to solve the optimization problem.

B. Equating the Two Fractions

This section explores a simple, and intuitive, solution to the
optimization problem in (5). The optimization variables are the
fraction of users associated with each tier (Ak) and the fraction
of spectrum allocated to that tier (wk). Therefore, an intuitive
solution is to setAk “ wk, i.e., to use the same fraction
for both variables. As our results will show, this solution is
extremely close to the (numerical) solution to (5). In the case
of Ak “ wk, the optimization problem is reduced to:

max
tAkuK

k“1

K
ÿ

k“1

1

A´1
k ` ρpτ̄k, αq

subject to:
K
ÿ

k“1

Ak “ 1

Ak ě 0 k “ 1, ¨ ¨ ¨K,

(20)

wheretAkuKk“1 is now the only set of optimization variables
and τ̄k “ 2Rkλu{Wλk ´ 1. It is easy to show that this problem
is concave. The equivalent unconstrained objective function is:

LpAk, ηq “
K
ÿ

k“1

Ak

1 ` Akρpτ̄k, αq
´ η

˜

K
ÿ

k“1

Ak ´ 1

¸

. (21)

Differentiating (21) with respect toAk, and setting the deriva-
tive to 0, we obtain:

BLpAk, ηq

BAk

“
1

p1 ` Akρpτ̄k, αqq2
´ η “ 0, (22)

ùñ Ak “

a

1{η ´ 1

ρpτ̄k, αq
. (23)

Applying
řK

k“1 Ak “ 1, we have
a

1{η ´ 1 “
1

řK
k“1 1{ρpτ̄k, αq

. Using this expression in (23), the optimum

tier association and spectrum allocation for tierk is given by:

A˚
k “ w˚

k “
1{ρpτ̄k, αq

řK
k“1 1{ρpτ̄k, αq

, (24)

i.e., in this special case when we equate the two fractions, we
have a closed-form solution to (5).

IV. SIMULATION RESULTS

We consider a three-tier network (K “ 3) with λu “
5{100, tλ1, λ2, λ3u “ t0.01, 0.05, 0.2uλu and tP1, P2, P3u =
{46, 30, 20} dBm denoting the user density, tiers’ AP density
and transmit power respectively. We obtain the optimum tier
association probability and spectrum partitioning for three
different scenarios: 1)tAkuKk“1 andtwkuKk“1 are interior-point
solutions to the optimization problem in (5); 2)tAk “ wkuKk“1

are solutions using (24); 3)twkuKk“1 are solutions to the
optimization problem in (5) whenBk “ 1 @k, i.e., the
max-SIR scenario. We compare the obtained results with the
optimum solution through a brute force search. The optimum
tier association and spectrum partitioning with the higher
average load per AP,̃Nk, are also presented for comparison.
We useα “ 3.5 as the path loss exponent for all tiers.

Fig. 1 shows the overall rate coverage for equal and different
tier rate thresholds. Clearly, the max-SIR performs much
worse than optimizing the relevant fractions, illustrating the
advantage of offloading (if done jointly with the resource
allocation). More interesting is the rate coverage achieved
when the tier’s share of spectrum is equal to the share of
users it serves as given by (24). While the overall network
coverage is almost identical to the optimum case, there is a
slight difference in tier association and spectrum partitioning
as shown in Fig. 2. Note that if the rate threshold increases,the
tier’s probability of coverage decreases. Hence, the network
coverage is maximized by moving users (followed by the
required spectrum) from the tier with the increasing rate
threshold to the other tiers.

V. CONCLUSIONS

We considered the problem of optimizing the tier asso-
ciation probability and spectrum portioning in a multi-tier
network with the objective of maximizing the rate coverage.
Our results show a significantly improved coverage by jointly
optimizing the user association and spectrum allocation. In-
terestingly, the intuitive solution of equating the two fractions
results in negligible performance loss. This result is important
from the system design point of view: (i) it simplifies the
optimization problem reducing it to one with a closed-form
solution given by (24); (ii) the tier with the smallest fraction
of spectrum also serves the least number of users. Considering
a reasonable threshold forAk (hencewk), a tier can potentially
be eliminated from the network with little impact on the
network rate coverage.
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(a) Same rate threshold for all tiers.
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(b) Different rate thresholds;tR1, R2u “ t0.5, 1u Mbps.

Fig. 1: Overall rate coverage in a 3-tier network with (a) the
same rate threshold for all tiers, (b) different rate thresholds. In
both cases,tP1, P2, P3u = {46, 30, 20}dBm and tλ1, λ2, λ3u “
t0.01, 0.05, 0.2u ˆ λu.

APPENDIX

PROOF OFTHEOREM 1

Proof: This is a special case of the rate coverage derived
in [3] with average number of users per AP and orthogonal
spectrum allocation across tiers. The probability that a user
connects to tierk at connection distancer is given by [2,
Lemma 1]Ppn “ k | rq “

śK
j“1,j‰k e

´πλjpPjBj{PkBkq2{αr2 .

Therefore, the probability of the joint event that the user
connects to tierk and meets its rate threshold is given by:

Pprk ě Rk, n “ kq “ Er

”

Ppγk ě τk, n “ k | rq
ı

“ Er

”

Ppγk ě τk | rq ¨ Ppn “ k | rq
ı

“

ż 8

r“0

e´πλkr
2ρpτk,αq ¨

˜

K
ź

j“1,j‰k

e
´πλj

´

PjBj

PkBk

¯

2{α
r2

¸

fr prq dr

paq
“

ż 8

r“0

2πλkre
´πλkr

2

”

ρpτk,αq`
řK

j“1

λj

λk

´

PjBj

PkBk

¯

2{α
ı

dr

“ 1

pA´1

k
`ρpτk,αqq

,

(25)
where (a) results from the distribution of the connection
distance in a PPP network with densityλk given byfr prq “
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Fig. 2: Comparing the optimum tier association and spectrum
partitioning for different tiers with the solution to (20),i.e,
A˚

k
“ w˚

k
. tP1, P2, P3u “ t46, 30, 20udBm and tλ1, λ2, λ3u “

t0.01, 0.05, 0.2u ˆ λu. The results obtained by the Interior-point
method and the optimum values considering the higher average load
Ñk are referred to as ‘IP’ and ‘HL’ respectively.

2πλkre
´πλkr

2

, and A´1
k “

řK
j“1

λj

λk

´

PjBj

PkBk

¯2{α

[2]. Note
that we do not consider a random load at each AP, but constant
average load only affected by the user and AP densities and
the tier association probabilities. Using the sum probability of
disjoint events, the overall probability of rate coverage is:

Rc “
K
ÿ

k“1

Pprk ě Rk, n “ kq “
K
ÿ

k“1

1

A´1
k ` ρpτk, αq

, (26)

and the proof is complete.
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