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The Cognitive Interference Channel with a Causal
Relay in Very Strong Interference

Fernando Reátegui, Muhammad Ali Imran and Rahim Tafazolli

Abstract—We study the cognitive interference channel where
an additional node (a relay) is present. In our model the relay’s
operation is causal rather than strictly causal, i.e., the relay’s
transmit symbol depends not only on its past but also on
its current received symbol. We derive outer bounds for the
discrete and Gaussian cases in very strong interference. A scheme
for achievability based on instantaneous amplify-and-forward
relaying is proposed for this model. The inner and outer bounds
coincide for the special case of very strong interference.

Index Terms—Cognitive Interference Channel, Causal Relay-
ing, Interference Relay Channel.

I. INTRODUCTION

MOTIVATED by the need to improve the transmission
efficiency in modern communication systems, the idea

of a radio that is aware of its surroundings and is able to
accommodate its transmission scheme to achieve this goal has
been proposed [1]. A radio of this type is called cognitive. In
the Information theory community, the approach to cognition
has taken a rather distinctive route: the cognitive radio is
assumed to have causal or non-causal knowledge of the other
user’s current transmitted message. This assumption allows the
cognitive transmitter to apply sophisticated encoding schemes
in order to mitigate the interference at its receiver and simul-
taneously utilise part of its power in order to cooperate with
the primary user. A model with such capability is known as a
Cognitive Interference Channel (CIC) [2].
The capacity region of the CIC is known in very strong
interference, weak interference, amongst other regimes [2].
The capacity in the very strong interference regime follows
by similar techniques utilised to achieve the capacity region
of the Interference Channel (IC) in strong interference [3].
Moreover, it has been shown in the literature that cooperative
communication can improve the achievable rate region of
several channel configurations. In [4], a relay is added to the
CIC in order to help the communication; however, its operation
is strictly causal. In this paper we extend this setting and
assume that the relay operation is causal rather than strictly
causal, i.e., the relay’s transmit symbol depends not only on its
past received symbols, but also on its current received symbol.
We name this model the CIC with a causal relay (CIC-CR).
Models with causal relays have been shown in previous works
[5] to be good models for studying amplify-and-forward (AF)
relaying if the overall delay spread, including the path through
the relay, is much smaller than the inverse of the bandwidth.
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Fig. 1. The discrete memoryless CIC with a causal relay. Cognitive and
primary transmitter are denoted with subscripts 1 and 2 respectively.

We derive an outer bound to the capacity region for the discrete
channel and apply the results to the Gaussian case. A scheme
for achievability that utilises instantaneous AF at the relay is
also presented. This simple encoding scheme is close to the
capacity region in very strong interference and is tight when
a relation between the channel coefficients holds. The rest of
the paper is organised as follows. The discrete memoryless
channel is treated in Section II and the Gaussian channel in
Section III. We conclude the work in Section IV.

II. THE CIC WITH A CAUSAL RELAY

First the notation is described and the model introduced.

A. Notation

The notation of [6] is utilised throughout the paper. Lower
case letters (e.g. x, y) are used to denote values of random
variables. Upper case letters (e.g. X,Y ) denote random vari-
ables. A sequence of random variables (Xi, ...Xj) is denoted
by Xj

i , for 1 ≤ i ≤ j. When i = 1 the subscript is dropped:
Xj = (X1, ..., Xj). The probability mass function (pmf) of a
random variable (RV) X is denoted by pX(x). We often drop
the subscript when the pmf is understood from the context,
e.g. p(x). The entropy (differential entropy) of a RV and the
mutual information between two RVs are indicated by H(·)
(h(·)) and I(·; ·) respectively. The capacity function is defined
as C(x) = 1/2 log(1 + x) where the logarithm is to the base 2.

B. Definitions

Definition 1. The discrete memoryless CIC-CR consists of
three finite input sets X1, X2, X3, three finite output sets Y1, Y2,
Y3 and a probability transition function p(y1, y2, y3|x1, x2, x3).
It is depicted in Fig. 1.

Definition 2. A (2nR1 , 2nR2 , n) code for the discrete mem-
oryless CIC-CR consists of a pair of uniformly distributed
messages M1 ∈ [1 : 2nR1 ] and M2 ∈ [1 : 2nR2 ], two encoding
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functions at the transmitters Xn
1 = f1(M1,M2) and Xn

2 =

f2(M2), an encoding function at the relay X3i = f3i(Y
i
3 ) and

two decoding functions M̂t = gt(Y
n
t ), for t = 1, 2. The average

probability of error is defined as P (n)
e = P (

⋃
t{M̂t 6=Mt}). A

rate pair (R1, R2) is said to be achievable if there exists a
sequence of (2nR1 , 2nR2 , n) codes such that limn→∞ P

(n)
e = 0.

The capacity region of the discrete memoryless CIC-CR is the
closure of the set of all achievable rate regions. We assume
that the channel is memoryless, i.e., (Xi−1

1 , Xi−1
2 , Y i−1

3 ) →
(X1i, X2i)→ Y3i, and (Xi−1

1 , Xi−1
2 , Xi−1

3 , Y i−1
3 , Y i−1

1 , Y i−1
2 )→

(X1i, X2i, X3i, Y3i)→ (Y1i, Y2i), form Markov chains.

Definition 3. The discrete memoryless CIC-CR is in the very
strong interference regime if

I(X1;Y1|X2, Y3, X3) ≤ I(X1;Y2|X2, Y3, X3), (1)
I(X1, X2;Y2|Y3, X3) ≤ I(X1, X2;Y1|Y3, X3), (2)

for all p(x1, x2) and x3i = f3i(y
i
3).

The interference regime convention of [2] for the CIC is
utilised. From (1), decoding M1 at receiver 2 should not
constrain the maximum rate R1. Similarly from (2), requiring
to decode both messages at receiver 1 should not constrain the
maximum sum-rate at receiver 2, i.e., there is no rate penalty
in decoding the interference at the unintended receiver. The
model is said to be in strong interference if only (1) holds.

Theorem 1. An outer bound to the capacity region of the
discrete memoryless CIC with a causal relay in strong inter-
ference consists of the set of rate pairs (R1, R2) satisfying

R1 ≤ I(X1;Y3|X2) + I(X1;Y1|X2, Y3, X3), (3a)
R1 +R2 ≤ I(X1, X2;Y3) + I(X1, X2;Y2|Y3, X3), (3b)

for all p(x1, x2) and x3i = f3i(y
i
3).

Proof. See Appendix A.

III. THE GAUSSIAN CIC WITH A CAUSAL RELAY

In the Gaussian channel the relay node is equipped with
one antenna for reception and another one for transmission.
The antennas are isolated, therefore they do not interfere with
each other. The channel model is described as follows:

Y1 = h11X1 + h12X2 + h13X3 + Z1,

Y2 = h21X1 + h22X2 + h23X3 + Z2,

Y3 = h31X1 + h32X2 + Z3, (4)

where hrt is the channel coefficient from transmitter t to
receiver r for r, t = 1, 2, 3. Zr ∼ N (0, 1) is zero-mean unit-
variance Gaussian noise. The average power constraints at the
three transmitters are P1, P2 and P3 respectively.

A. The Gaussian CIC-CR in very strong interference

Theorem 2. An outer bound to the capacity region of the
Gaussian CIC with a causal relay in strong interference
consists of the set of rate pairs (R1, R2) satisfying

R1 ≤ C
(
(h2

11 + h2
31)(1− ρ2)P1

)
, (5a)

R1 +R2 ≤ C
(
(h2

21 + h2
31)P1 + (h2

22 + h2
32)P2 + (h2

21h
2
32

+ h2
22h

2
31)(1− ρ2)P1P2 + 2(h21h22 + h31h32)

ρ
√
P1P2 − 2h21h22h31h32(1− ρ2)P1P2

)
, (5b)

where ρ ∈ [0, 1] denotes the correlation between X1 and X2.

Proof. See Appendix B.

In the following it is assumed that the relay in the Gaus-
sian CIC-CR operates on instantaneous amplify-and-forward
relying, X3 = αY3, where α is the amplification factor.

Lemma 1. The Gaussian CIC-CR is said to be in the very
strong interference regime if the following holds

(1− ρ2)(h11 + h13h31α)
2P1

h2
13α

2 + 1
≤ (1− ρ2)(h21 + h23h31α)

2P1

h2
23α

2 + 1
,

1

h23α2 + 1

(
(h21 + h23h31α)

2P1 + (h22 + h23h32α)
2P2+(

h21h22 + (h21h32 + h22h31)h23α+ h2
23h31h32α

2
)
2ρ
√
P1P2

)
≤ 1

h13α2 + 1

(
(h11 + h13h31α)

2P1 + (h12 + h13h32α)
2P2+(

h11h12 + (h11h32 + h12h31)h13α+ h2
13h31h32α

2
)
2ρ
√
P1P2

)
.

Proof. It is obtained by applying (1) and (2) to the model in
(4) under the assumption of the relay operation.

The instantaneous amplify-and-forward relaying has also
been proposed for other models [5]. Under this assumption,
the following equivalent CIC can be found:

Y1 = (h11 + h13h31α)X1 + (h12 + h13h32α)X2 + h13αZ3 + Z1,

Y2 = (h21 + h23h31α)X1 + (h22 + h23h32α)X2 + h23αZ3 + Z2.

As the capacity region of the cognitive interference channel
in the very strong interference regime is known [2]: R1 ≤
I(X1;Y1|X2), R1 + R2 ≤ I(X1, X2;Y2), it can be directly
applied to the equivalent CIC channel. Two different values of
α optimise R1 and the sum-rate respectively. The description
of the rate region is omitted due to space constraints.
Remark 1. For the symmetric channel, i.e., P1 = P2, h11 = h22,
h31 = h32 and h13 = h23, it can be verified that as long as
h21 = h11 and h12 ≥ h21, the region in (5) is the capacity
region of the CIC-CR in very strong interference.

B. Comparison plots

Fig. 2 shows an example of an achievable rate region ob-
tained by time sharing between the two values of α computed
in the optimisation process and by varying the degree of
cooperation at the cognitive transmitter (ρ). Fig. 2 also depicts
the outer bound in (5) and an achievable rate region for
this model by utilising the decode-and-forward (DF) relaying
scheme. When DF is utilised the encoding function at the relay
depends on the past received symbols only. This is shown
for three values of the transmit power at the relay. It can be
noted that instantaneous AF outperforms DF for this particular
scenario. Additionally, it can be pointed out that as we are
studying a scenario in very strong interference, the decoding at
the relay does not constrain the achievable rates; DF performs
better than partial DF. Further studies could combine DF and
instantaneous AF for this setting.
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IV. CONCLUSION

We derived outer bounds for the discrete and Gaussian
cognitive interference channels with a causal relay in strong
interference. We showed that a simple relaying scheme that
instantaneously amplifies and forwards what it receives is
optimal for the symmetric channel. In other words, not only
can the transmission rates be increased by means of deploying
re-transmission points in cognitive scenarios, but a rather
simple relaying scheme allows to do so. We also showed
that this scheme outperforms decode-and-forward at the relay
as the latter only utilises the past received symbols in its
encoding. The derived outer bound is general, i.e., it is a
benchmark for any scheme utilised at the relay.

APPENDIX A
PROOF OF THEOREM 1

The following proposition and lemma are utilised.

Proposition 1. If I(Xk
1 ;Y

k
1 |Xk

2 , Y
k
3 ) ≤ I(Xk

1 ;Y
k
2 |Xk

2 , Y
k
3 ),

for all p(xk1 , x
k
2), Xk

3 = fk
3 (Y

k
3 ) and k ∈ [1 : n],

then I(Xk
1 ;Y

k
1 |Xk

2 , Y
k
3 , V ) ≤ I(Xk

1 ;Y
k
2 |Xk

2 , Y
k
3 , V ), for all

p(v)p(xk1 , x
k
2 |v) and Xk

3 = fk
3 (Y

k
3 ), and V complies with the

encoding Markov chains.

Proof.

I(Xk
1 ;Y

k
1 |Xk

2 , Y
k
3 , V ) =

∑
v

p(v)I(Xk
1 , Y

k
1 |Xk

2 , Y
k
3 , V = v),

(a)

≤
∑
v

p(v)I(Xk
1 , Y

k
2 |Xk

2 , Y
k
3 , V = v),

= I(Xk
1 , Y

k
2 |Xk

2 , Y
k
3 , V ),

where (a) follows from the hypothesis.

Lemma 2. If (1) holds, then I(Xn
1 ;Y

n
1 |Xn

2 , Y
n
3 , U) ≤

I(Xn
1 ;Y

n
2 |Xn

2 , Y
n
3 , U) for all p(u)p(xn1 , xn2 |u) and x3k = f3k(y

k
3 )

where k ∈ [1 : n] and U can be any combination of past
symbols that comply with the encoding Markov chains.

Proof. By mathematical induction, for n = 1:

I(X1,1;Y2,1|X2,1, Y3,1, U)− I(X1,1;Y1,1|X2,1, Y3,1, U)

(a)
= I(X1,1;Y2,1|X2,1, Y3,1, X3,1, U)

− I(X1,1;Y1,1|X2,1, Y3,1, X3,1, U)

(b)

≥ 0,

where (a) holds since X3,1 = f3,1(Y3,1) and (b) holds from (1)
and Proposition 1. Assuming the lemma holds for n− 1, i.e.,

I(Xn−1
1 ;Y n−1

1 |Xn−1
2 , Y n−1

3 , U)

≤ I(Xn−1
1 ;Y n−1

2 |Xn−1
2 , Y n−1

3 , U), (6)

for all p(u)p(xn−1
1 , xn−1

2 |u) and Xn−1
3 = fn−1

3 (Y n−1
3 ). We now

apply a similar procedure to the one in [3]:

I(Xn
1 ;Y

n
2 |Xn

2 , Y
n
3 , U)− I(Xn

1 ;Y
n
1 |Xn

2 , Y
n
3 , U)

= I(Xn
1 ;Y

n−1
2 |Xn

2 , Y
n
3 , U)

+ I(Xn
1 ;Y2n|Xn

2 , Y
n
3 , U, Y

n−1
2 )

− I(Xn
1 ;Y1n|Xn

2 , Y
n
3 , U)

− I(Xn
1 ;Y

n−1
1 |Xn

2 , Y
n
3 , U, Y1n),

= I(Xn
1 , Y1n;Y

n−1
2 |Xn

2 , Y
n
3 , U)

+ I(Xn
1 ;Y2n|Xn

2 , Y
n
3 , U, Y

n−1
2 )

− I(Xn
1 , Y

n−1
2 ;Y1n|Xn

2 , Y
n
3 , U)

− I(Xn
1 ;Y

n−1
1 |Xn

2 , Y
n
3 , U, Y1n),

= I(Y1n;Y
n−1
2 |Xn

2 , Y
n
3 , U)

+ I(Xn−1
1 ;Y n−1

2 |Xn
2 , Y

n
3 , U, Y1n)

+ I(X1n;Y
n−1
2 |Xn

2 , Y
n
3 , U, Y1n, X

n−1
1 )

+ I(X1n;Y2n|Xn
2 , Y

n
3 , U, Y

n−1
2 )

+ I(Xn−1
1 ;Y2n|Xn

2 , Y
n
3 , U, Y

n−1
2 , X1n)

− I(Y n−1
2 ;Y1n|Xn

2 , Y
n
3 , U)

− I(X1n;Y1n|Xn
2 , Y

n
3 , U, Y

n−1
2 )

− I(Xn−1
1 ;Y1n|Xn

2 , Y
n
3 , U, Y

n−1
2 , X1n)

− I(Xn−1
1 ;Y n−1

1 |Xn
2 , Y

n
3 , U, Y1n)

− I(X1n;Y
n−1
1 |Xn

2 , Y
n
3 , U, Y1n, X

n−1
1 ),

(a)
= I(Xn−1

1 ;Y n−1
2 |Xn

2 , Y
n
3 , U, Y1n)

+ I(X1n;Y2n|Xn
2 , Y

n
3 , U, Y

n−1
2 )

− I(X1n;Y1n|Xn
2 , Y

n
3 , U, Y

n−1
2 )

− I(Xn−1
1 ;Y n−1

1 |Xn
2 , Y

n
3 , U, Y1n),

(b)

≥ I(Xn−1
1 ;Y n−1

2 |Xn
2 , Y

n
3 , U, Y1n)

− I(Xn−1
1 ;Y n−1

1 |Xn
2 , Y

n
3 , U, Y1n),

(c)

≥ 0,

where (a) follows from the memoryless property of the
channel and as Xn

3 = fn
3 (Y

n
3 ). (b) follows from (1) and Propo-

sition 1 with V = Xn−1
2 , Y n−1

3 , Xn−1
3 , U, Y n−1

2 , and (c) follows
from (6) and Proposition 1 with V = X2n, Y3n, Y1n.

Next we prove the theorem. From Fano’s inequality [6]

n(R1 − εn) ≤ I(M1;Y
n
1 , Y

n
3 ), (7)

n(R1 +R2 − εn) ≤ I(M1;Y
n
1 , Y

n
3 ) + I(M2;Y

n
2 , Y

n
3 ). (8)

For brevity we omit εn in the following. From (7)

nR1 ≤ I(M1;Y
n
1 , Y

n
3 ),
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(a)
= I(M1;Y

n
1 , Y

n
3 |M2),

=

n∑
i=1

I(M1;Y1i, Y3i|M2, Y
i−1
3 , Y i−1

1 ),

(b)
=

n∑
i=1

I(M1, X1i;Y1i, Y3i|M2, X2i, Y
i−1
3 , Y i−1

1 ),

≤
n∑

i=1

I(M1,M2, Y
i−1
1 , X1i;Y1i, Y3i|X2i, Y

i−1
3 ),

≤
n∑

i=1

I(M1,M2, Y
i−1
1 , X1i;Y3i|X2i, Y

i−1
3 )

+

n∑
i=1

I(M1,M2, Y
i−1
1 , X1i;Y1i|X2i, Y

i
3 ),

(c)

≤
n∑

i=1

I(M1,M2, Y
i−1
1 , Y i−1

3 , X1i;Y3i|X2i)

+

n∑
i=1

I(M1,M2, Y
i−1
1 , Y i−1

3 , X1i;Y1i|X2i, Y3i, X3i),

(d)
=

n∑
i=1

I(X1i;Y3i|X2i) +

n∑
i=1

I(X1i;Y1i|X2i, Y3i, X3i),

where (a) follows from the independence of the messages, (b)
as X1i and X2i are functions of (M1,M2) and M2 respectively,
(c) follows as X3i is a function of Y i

3 , and (d) follows from
the memoryless property of the channel. From (8)

n(R1 +R2)

≤ I(M1;Y
n
1 , Y

n
3 ) + I(M2;Y

n
2 , Y

n
3 ),

(e)

≤ I(M1;Y
n
1 , Y

n
3 |M2) + I(M2;Y

n
2 , Y

n
3 ),

(f)
= I(M1, X

n
1 ;Y

n
1 , Y

n
3 |Xn

2 ,M2) + I(M2, X
n
2 ;Y

n
2 , Y

n
3 ),

= I(M1, X
n
1 ;Y

n
3 |Xn

2 ,M2) + I(M1, X
n
1 ;Y

n
1 |Y n

3 , X
n
2 ,M2)

+ I(M2, X
n
2 ;Y

n
3 ) + I(M2, X

n
2 ;Y

n
2 |Y n

3 ),

(g)
= I(M1,M2, X

n
1 , X

n
2 ;Y

n
3 ) + I(Xn

1 ;Y
n
1 |Y n

3 , X
n
2 ,M2)

+ I(M2, X
n
2 ;Y

n
2 |Y n

3 ),

(h)
= I(Xn

1 , X
n
2 ;Y

n
3 ) + I(Xn

1 ;Y
n
1 |Y n

3 , X
n
2 ,M2)

+ I(M2, X
n
2 ;Y

n
2 |Y n

3 ),

(i)

≤ I(Xn
1 , X

n
2 ;Y

n
3 ) + I(Xn

1 ;Y
n
2 |Y n

3 , X
n
2 ,M2)

+ I(M2, X
n
2 ;Y

n
2 |Y n

3 ),

= I(Xn
1 , X

n
2 ;Y

n
3 ) + I(M2, X

n
1 , X

n
2 ;Y

n
2 |Y n

3 ),

(j)
= I(Xn

1 , X
n
2 ;Y

n
3 ) + I(Xn

1 , X
n
2 ;Y

n
2 |Y n

3 ),

=

n∑
i=1

I(Xn
1 , X

n
2 ;Y3i|Y i−1

3 ) +

n∑
i=1

I(Xn
1 , X

n
2 ;Y2i|Y i−1

2 , Y n
3 ),

≤
n∑

i=1

I(Xn
1 , X

n
2 , Y

i−1
3 ;Y3i)

+

n∑
i=1

I(Xn
1 , X

n
2 , Y

i−1
2 , Y i−1

3 , Y n
3,i+1;Y2i|Y3i, X3i),

(k)
=

n∑
i=1

I(X1i, X2i;Y3i) +

n∑
i=1

I(X1i, X2i;Y2i|Y3i, X3i),

where (e) follows from the independence of the messages, (f)
as X1i and X2i are functions of (M1,M2) and M2 respectively,

(g), (h), (j) and (k) from the memoryless property of the
channel, (i) from Lemma 2. The rest of the proof is standard
and follows by introducing a time-sharing random variable
Q ∼ Unif[1 : n], independent of (M1,M2, X

n
k , Y

n
k ) for k =

1, 2, 3 and defining Xk = XkQ and Yk = YkQ.

APPENDIX B
PROOF OF THEOREM 2

From (3a) we have

R1 ≤ I(X1, Y3|X2) + I(X1;Y1|X2, Y3, X3),

≤ h(h31X1 + h32X2 + Z3|X2)− h(Z3)− h(Z1)

+ h(h11X1 + h12X2 + h13X3 + Z1|X2, Y3, X3),

= h(h31X1 + Z3|X2)− h(Z3)

+ h(h11X1 + Z1|X2, Y3)− h(Z1),

(a)

≤ h(h31X1 + Z3|X2)− h(Z3)

+ h(h11X1 + Z1|X2, h31X1 + Z3)− h(Z1),

= h(X2, h31X1 + Z3, h11X1 + Z1)− h(X2)

− h(Z3)− h(Z1),

(b)

≤ C
(
(h2

11 + h2
31)(1− ρ2)P1

)
, (9)

similarly from (3b) we have

R1 +R2

≤ I(X1, X2;Y3) + I(X1, X2;Y2|Y3, X3),

≤ h(h31X1 + h32X2 + Z3)− h(Z3)− h(Z2)

+ h(h21X1 + h22X2 + Z2|h31X1 + h32X2 + Z3),

= h(h31X1 + h32X2 + Z3, h21X1 + h22X2 + Z2)

− h(Z3)− h(Z2),

(c)

≤ C
(
(h2

21 + h2
31)P1 + (h2

22 + h2
32)P2 + (h2

21h
2
32

+ h2
22h

2
31)(1− ρ2)P1P2 + 2(h21h22 + h31h32)

ρ
√
P1P2 − 2h21h22h31h32(1− ρ2)P1P2

)
,

where (a) follows as conditioning reduces entropy, (b) and (c)

follow as the Gaussian distribution maximises the conditional
differential entropy for a given covariance constraint.
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