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Ergodic Capacity Analysis of MIMO
Relay Network over Rayleigh-Rician Channels

Siyuan Zhou Student Member, IEEE, Alessandro NordioMember, |IEEE, Giuseppa AlfanoMember, IEEE,
Carla-Fabiana Chiasseriricnior Member, |EEE

Abstract—We present an analytical characterization of the fading channel, since Rayleigh fading can be considered as a
ergodic capacity for an amplify-and-forward (AF) multiple -input  |imiting case of Rician fading.
multiple-output (MIMO) relay network over asymmetric chan - In the first of the above asymmetric scenarios (i.e., a relay

nels. In the two-hop system that we consider, the source- and close to the source), the analysis of the system performance
relay-destination channels undergo Rayleigh and Rician fding, ): Y Y P

respectively. Considering arbitrary-rank means for the relay- IS trivial. Much more challenging, instead, is the case wher
destination channel, we first investigate the marginal disibution ~ the channels of the two hops are modeled as Rayleigh and
of an unordered eigenvalue of the cascaded AF channel, and Rician, respectively. This second scenario has indeeacténl

we provide an analytical expression for the ergodic capaoﬁr significant attention in the literature. In particular, ptpvides

of the system. The closed-form expressions that we derive & an exact expression of the moment aenerating function and
computationally efficient and validated by numerical simuktion. P 9 9

Our results also show the impact of the signal-to-noise rati and ~the moments of the instantaneous signal-to-noise rati&z)SN

of the Rician factor on this asymmetric relay network. under the assumption that an orthogonal space-time block
Index Terms—Ergodic capacity, MIMO, Amplify-and-Forward coding scheme is applied. Inl[5], the network performance is
relay, Rayleigh fading, Rician fading. studied assuming that the relay is equipped with a single an-

tenna. To the best of our knowledge, no analytical exprassio
instead exists for the ergodic capacity in a AF MIMO relay
. INTRODUCTION network over asymmetric fading channels in the presence of
Data transmission through relay channel has been provedatmultiple-antenna relay node. In this letter, we therefire
improve coverage, reliability and quality-of-service iireless this gap. By using finite-dimensional random matrix theors,
systems. Among several proposed relay schemes, amplifyovide a closed-form expression of the unordered eigeeval
and-forward (AF) has attracted significant attention siitce distribution of the cascaded asymmetric relay channel when
can be easily analyzed and implemented. An AF two-hdpe two hops are characterized by Rayleigh and Rician fading
system is a classic half-duplex model, where the sourcessemngispectively. Through this expression, we also derive a an
a signal to the relay in the first hop, and then the reldytical expression of the ergodic capacity of the systenthwi
broadcasts the received signal to the destination afteplsimarbitrary-rank means of the Rician channel. Furthermoye, b
amplification. This model can then be enhanced by introducinumerical simulation, we investigate the network perfanoea
multiple-input multiple-output (MIMO) technology, whigtan as the Rician factor and the SNR vary.
bring remarkable improvements in network performance over
. ; . . Il. NOTATION AND DEFINITIONS
conventional single-input single-output systems. i
The performance of AF MIMO relay networks has been Throughout the paper, matrices are denoted by uppercase
widely analyzed by applying either asymptotic analysis [1Poldface Igtt_ers, and vec'Fors by_ Iowercase_z boldfatig. de-
[2] (i.e., assuming an infinite number of antennas or node8ptes statistical expectatiofs)" is the conjugate transpose
or finite random matrix theory [3]. What these two approach@®erator, and - | and Tr{-} denote, respectively, the deter-
have in common is the assumption that both channels in th@hant and the trace of a square matrix. Also, we indicate
relay system are subject to Rayleigh fading. In real-worMith {ai;} the matrix whose elements ag;. I, (a) is the
environments, however, the relay node may be deployedrclo§@Mplex multivariate Gamma function defined i [6] as

to the destination. In this case, a strong Line-of-Sight§).o m
path between the two close-by nodes may exist and the channel Pm(a) = mm H Ila—£+1),
on the second hop is affected by Rician, rather than Rayleigh =1

fading. Note that such an asymmetric channel model can WeereI'() indicates the standard gamma function and =

seen as a generalization of the traditional two-hop Ralleig”™~"/*. We also denote by, them x m identity matrix.
Let A be anm x m Hermitian matrix with distinct non-

A. Nordio is with IENT-CNR (Institute of Electronics, Teéemmunications negative eigenvalues, ..., a,,, sorted in descending order,
and Information Engineering of the National Research Cbuokcltaly), gnd et F = {fi(aj)}r i,j = 1,...,m, be anm x m

Italy. G. Alfano, S. Zhou, and C.-F. Chiasserini are with Dipartimento . . . . .
di Elettronica and Telecomunicazioni, Politecnico di Tori Italy. C.-F. Matrix where thef;(-) are arbitrary differentiable functions.

Chiasserini is also a Research Associate at IEIIT-CNR. We denote by (A) the Vandermonde determinant 4f, i.e.,
This paper was made possible by NPRP gtat- 782 — 2 — 322 from
the Qatar National Research Fund (a member of Qatar FoonjlafThe V(A) = H (ai - aj).

statements made herein are solely the responsibility oftlibors. 1<i<j<m



When the eigenvalues oA are not distinctV(A) = 0 and
|F| = 0. However, for any integed < n < m [[7, Lemma 5],

T n(m) |f|

o - T L' (M) V(A)

A —al, "™, (1)

where A is of sizen x n and has eigenvalues, . ..
whereas

(F)i; = {

with £{¥)(.) denoting thek-th derivative of f;(-).

7an1

(ﬂ(aj) 1= 1P..,ﬂ@;j ::1V..,n
fi(m_'n(a) t=1,....m; j=n+1,....m

The generalized hypergeometric function is denoted

oFy(a;b; X), wherea = [a1,...,a,]T, b = [b1,...,b,]T,

and X’ represents a set of arguments that can be either scal

or square matrices. In the case of a scalar argurteat{z},
the hypergeometric function is defined as [6]

oy (a)g - (ap)k 2t
pFolaibiz) = kzzo (b1)i - (bg)w k!

where(a), = I'(a+k)/I'(a) denotes the Pochhammer symbol.

When X = {®, ¥}, with ® and ¥ both of sizem x m,

»Fy(a;b; X') can be written through hypergeometric function§2PaC

of scalar arguments as|[8, eq. (2.34)]

Fy(a; b; o e) }|
V(®)V(P)

qu(a;b;@,\Il):cl{p hk=1,...,m.

)

In @), the constant is given by

_ Tum) 17 _Tm(b) (@i —m)t™
= TapTT H (b —m)Im [H m] 7

j=1 i=1

a; =a;—m+1,1=1,...,p, Bj:bj—m+1,j:1,...,q,
and the eigenvalues ab and ¥ are denoted by, ..., ¢,
andy, ..., ¥, respectively.

IIl. SYSTEM MODEL

be the channel matrix between the relay and the destination.
Then the signal received at the destination can be written as

y = HyAH;x+ HyAn, +ng4, ©))

where A = /al, is anr x r linear transformation matrix
representing the power amplification at the relay, andand
ny are, respectively, the noise vectors at the relay and at the
destination, whose entries are modeled as i.i.d. zero-mean
unit-variance, Gaussian random variables. Note that tbgeab
assumption orA reflects the case where the relay has no CSI.
The source-relay channel is assumed to be affected by
Rayleigh fading. Thus, the entries &1, are i.i.d complex
Gaussian random variables with zero mean and unit variance.

l?Xstead, the relay-destination channel is assumed to betaff

SRician fading so that the entries B, can be written as

K 1 -~

k41 Pl )
wherer is the Rician factorH, is deterministic and the entries
of Hy are i.i.d. complex Gaussian with zero mean and unit
variance. For simplicity of notation, we define= 1 + .
Let ¢ = min(r,m), s = min(n,q), A = diagAi,...,\y)
be the non-zero eigenvalues #f,H,". Then the ergodic
tﬂ of the AF-MIMO relay channel described above is

given by [3, eq. (13)]
Clo)=3 | om (1+2)p . @

wherez denotes an unordered eigenvalue of the random matrix
Z = H"BH andp(z) denotes the probability density function
(pdf) of z. In the expression fdZ, H is ann x ¢ random matrix
with i.i.d, circularly symmetric, complex Gaussian ergngith

zero mean and unit variance, aBd= A(I+aA)"lisagxq
diagonal matrix.

H; = H, +

IV. PERFORMANCE ANALYSIS

The ergodic capacity of the AF-MIMO channel described
above can be obtained by deriving a closed-form expression
for p(z) and plugging it into [(5). In order to do so, we
first assume the LoS component of the Rician channel (i.e.,
H,) to be full-rank; this case is referred to as “non-i.i.d.

We consider a two-hop relay network where the sourcgician fading” in [9] and allows for relatively simpler aryais

the relay and the destination nodes are equipped wijth

(Sectiol1V=A). Then we will deal with the case whel, is

andm antennas, respectively. All nodes operate in half-duplgXy-rank (Sectio TV-B).
mode. We assume that no direct link exists between the source
and the destination. The destination has perfect chanatel sta, Closed-form expression for the ergodic capacity

information (CSI) on the source-relay and relay-destorati

channels, while the source and relay have no CSI.

Following [2] and [3], we assume that data transmission
takes place in two phases, according to the following scheme
In the first phase, the source transmits signathich is a vec-

tor with n components, towards the relay. The entriex @fre

The pdf of the unordered eigenvalue Bf= H"BH, with
H andB as defined above, can be written as

p(z) = /B p-a(2/B)ps(B) dB, ©)

wherep. g(z|B) is the pdf ofz conditioned orB and can be

assumed to be i.i.d., zero-mean, circular symmetric, cempwritten as [3, eq. (95)]:

Gaussian random variables and the power irradiated by each

antenna is assumed to be equapta, i.e., E[xx"] = p/nl,,

wherep is the signal-to-noise ratio. In the second phase, the
relay simply forwards a scaled version of the signal it has

Zn+k7q71
|Vl

I'(n—q+k) (7)

pnGB) = g

k=q—s+1

1t can be seen that by applying a whitening filter, the outpam e

I X
received from the source. Ldfl; € C"*" be the channel rewritten asy = Hx + n, for which the capacity is achieved with a Gaussian

matrix between the source and the relay, dig € C™*"

codebook.



In (@), V is agq x ¢ matrix with entries given by: Thus,b; = X\;/(1 + a);) has support in0, 1/a]. Moreover,
b= G—j+14k the expression gpg (B) provided in [8) refers to therdered
(V)i = { l_z/;)i g—n—1 J g eigenvalue distribution 0B, hence the integral ir[{6) should
e”Mb; , 4—Jt1=k. be taken under the constrait< b, < ... < b; < 1/a. By
An expression fopg (B) is given by the proposition below. substituting[[¥) and{8) if{6), we obtain:
Proposition 1: Consider a communication system and ma-

trix B as described above. Then the pdfBfis given by v A ot [T —aB| P '|F||V,|dB 15
p(z) = Z V(M |B|q—peTr{kB(I—aB)*1} (15)
) FVB)IBP L aB| 7l E @ ket
PB - (p_ q)!qur{RB(I—aB)fl+NM}V(%KM) ’ A Z ZCk— 1 |W | (16)
whereF = {(Fi(;p — ¢ + 1; kfub; /(1 — abj))} and M = - Y(M) hea e Tlex) 0
H,H,".

Proof: Note thatH, = H/\/%, whereH = /xH, + H, Where the constant is given by [IP) and;, = n—g+k. The
is a standard noncentral Wishart matrix with meg®H,. ¢ x ¢ matrix W, in (18) derives from the application df [10,
The joint pdf of the ordered e|genvalue&; of H"H is given Corollary 2] to the integral in[(15) and its entries are gign
by [6, eq. (102)]; usmgl]Z) it can be written as: .

a el ax xp 7f” )
2 N F 1; ki / o do J#Aq—k+1
(p q)!qur{A-’_HM}V(KJM) .7 % elﬁﬁamr Z/mf
o / T - rde, j=q—-k+1
wherep;, i = 1,...,q, are the eigenvalues &I = H2H2 o xl=ptn(1 — qz)rt

and A is a diagonal matrix whose elements axg j = ) (17)

1,...,q. The pdf of A can then be obtained as wherefi; = oF1(;p—q+1; kkpiz/(1—ax)) has been defined
below [8). The integrals in (17) can be solved by changing the

pa(A) = Ripz(RA) integration variable intar = y/(% + ay) and by expanding

_ %pqv( )l{OFl( p—q+ 1; Kﬁﬂl )}| (10)

T = WA eTTEATI Y M)
SinceB = A(I + aA)~!, the pdf of B can be written as a
function of the pdf ofA, i.e.,pg(B) = |I — aB| ?pa(B(I -
aB)~1), which yields [8). In the derivation of]8), we hav
exploited the property (B(I —aB)~!) = V(B)|[I — aB|* 4.

B B Low-rank LoS Rician fading component
Then we replaceg(B) in (@) with the expression i {8) and

the powers of the binomiat + ay. As a result, after some
computations (omitted for lack of space), the maWk, can
be rewritten as in[(13) and_{114). [ |

Eventually, the analytical expression for the ergodic citpa
Lcan be obtained by substituting {11) inkd (5).

obtain the result below. We now consider the case where the LoS component of the
Proposition 2: The pdf of an unordered eigenvalueof Rician channelH,, does_ not have full rank, i.e., the term;
7 — H"BH is given by [Wi| andV(M), respectively, at the numerator and denomi-
. » nator of [I1) vanish, thus leading t®)@0 indeterminate form.
p(z) = A Z &va' (11) In order to circumvent this problem, a limit must be taken,
V(M) T(ck) ’ which can be evaluated using I'Hopital’s rule. In partelin

k=q—s+1 ) .
o the following we assume thdl,"H, has0<g<q non-zero

wherecy, = n — g + k, the constant is given by eigenvalues, i.e44y41 = fig2 = - = 11, = 0. Then the pdf
FiPae—rTr{M} of an unordered eigenvalueof Z = H'BH can be derived
s(p — q)l4(rkR)aa=1/2” (12) by taking the following limit:
and W, is aq x ¢ matrix whose entries are as follows: p(Dow = lim p(z)
. Hg+1s--0s ,uqﬂ()
1 /i—
W B j (Jhl)F(dj,h)lFl (djnsp—q+ 15 kp;) v 4 et Wl
( k)ivj - Z a—hgdin (13) = A Z lim
h=0 kst 1 T(ck) mgtirg—0 V(M)
forijzl ey, j;éq—k-l-l and
) T W —~
e SX IQ/L zn)gz,;L/Q = %%|M|gqa (18)
: N glq
(Wk rp—n ZZ a hﬂh@ _q+1)ng£,h(2 2R)

(=0n=0 (14) where we have used the result reported[ih (1).[I0 (09,

fori=1,....,q,7=q—k+1,whered;, =p+1—j+h isagxg matrix with eigenvaluesyl,._..,ug and Wy is a
andge, = p—n-+£+h. In (I4), K,(z) denotes the modified ¢ x ¢ matrix whose(i, j)-th entry is given by(Wy); ;, for

Bessel function of the second kind. i=1,...,gandj=1,...,q

Proof: As mentioned abovep(z) can be computed by 3—1 . }
using [8) in [6). As for the integration domain, we obsena th ( ) Z (djn +q—i)r""
thei-th eigenvalue oHyH,M, \;, is such thad < \; < +oc. j —q+1)g_ahidin

5. h—0



fori=¢g+1,...,q,andj #q—k+1; and
N Zza M (NN gl \Gamin /2 ) ﬁ:l(idB,K:lo,.[:’:]l: ]
(Wo) —Z s e v pIipcRx L Ao |
A s Pp—q+1)g—i 777" = p=0dB,k =0, Analytical-~| |
fori =g+1,...,q, j = q— k+ 1. This result has been
obtained by taking the derivativg — j times (with respect
to p;) of the (4, j)-th entry of W;, and by evaluating it in , 9
uj =0, fori =1,...,gandj = g+ 1,...,9. The other
entries ofW, have been left unchanged. Again, the expression 0.6}
for the ergodic capacity for the low-rank LoS Rician fading  °5f p=1008K 21 Analyiical—| 1
component can be obtained by substituting (18) iffo (5). g %4 D S R 2 el ]
g 0.3F% Monte Carlo x [
V. NUMERICAL RESULTS g'i
We now validate our analytical derivations through Monte ¢

. . . . . 0

Carlo simulation, and show the information theoretic perfo 2
mance of the channel of](3). We consider= 2, r = 3,

m = 4, and the Rician channel with with LoS matrix thafig.- 1. Exact analysis vs. Monte Carlo simulation: pdf of amondered
SatisﬁeSTr{I:IQHI:IQ} — rm. More specifically in Figle eigenvaluez, for full-rank (top) and low-rank (bottom) LoS component.

and[2 we have employed both the full-rank LoS maiﬁyg

and the low-rank LoS matri¥l}, given by 3!
8 6
1 V2 2 111 g°
_ L |1 1 V2| 4 111 &
H = — ‘H, = 53 - rank Analvical —
CEEEVG S I BERVA T B R 111 22 %21 Rk Anaitical — ]
V2 5 111 S1 K3 lowrank. Anaivhical -~
1 i 0 ) ! Monte arlo X
While computing[[(5) and{6), we upper bound the integration ~ °© 5 R [dB] 20 %

variablesz and A so as to obtain an expression that can

be efficiently computed. In numerical simulation, an actairarig. 2. Exact analysis vs. Monte Carlo simulation: Ergodipacity vs. SNR

result can be obtained already far< 20 and z < 100. for different values of the Rician factor and rank of LoS cament.
Figure[1 shows the excellent match between the pdf,of

p(z), computed through the analytical expressionlih (6) anghs validated by showing the excellent match between the
the results obtained via Monte Carlo simulation. In paticu (esuits obtained through our exact expressions and those
the top plot shows(z) for the full-rank LoS component, as ypiained via Monte Carlo simulation.

the Rician factors and the SNR f) vary. It also compares

our result to that provided if[3] for the Rayleigh-Rayleigh REFERENCES
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