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Ergodic Capacity Analysis of MIMO
Relay Network over Rayleigh-Rician Channels

Siyuan Zhou,Student Member, IEEE, Alessandro Nordio,Member, IEEE, Giuseppa Alfano,Member, IEEE,
Carla-Fabiana Chiasserini,Senior Member, IEEE

Abstract—We present an analytical characterization of the
ergodic capacity for an amplify-and-forward (AF) multiple -input
multiple-output (MIMO) relay network over asymmetric chan -
nels. In the two-hop system that we consider, the source-relay and
relay-destination channels undergo Rayleigh and Rician fading,
respectively. Considering arbitrary-rank means for the relay-
destination channel, we first investigate the marginal distribution
of an unordered eigenvalue of the cascaded AF channel, and
we provide an analytical expression for the ergodic capacity
of the system. The closed-form expressions that we derive are
computationally efficient and validated by numerical simulation.
Our results also show the impact of the signal-to-noise ratio and
of the Rician factor on this asymmetric relay network.

Index Terms—Ergodic capacity, MIMO, Amplify-and-Forward
relay, Rayleigh fading, Rician fading.

I. I NTRODUCTION

Data transmission through relay channel has been proved to
improve coverage, reliability and quality-of-service in wireless
systems. Among several proposed relay schemes, amplify-
and-forward (AF) has attracted significant attention sinceit
can be easily analyzed and implemented. An AF two-hop
system is a classic half-duplex model, where the source sends
a signal to the relay in the first hop, and then the relay
broadcasts the received signal to the destination after simple
amplification. This model can then be enhanced by introducing
multiple-input multiple-output (MIMO) technology, whichcan
bring remarkable improvements in network performance over
conventional single-input single-output systems.

The performance of AF MIMO relay networks has been
widely analyzed by applying either asymptotic analysis [1],
[2] (i.e., assuming an infinite number of antennas or nodes),
or finite random matrix theory [3]. What these two approaches
have in common is the assumption that both channels in the
relay system are subject to Rayleigh fading. In real-world
environments, however, the relay node may be deployed closer
to the destination. In this case, a strong Line-of-Sight (LoS)
path between the two close-by nodes may exist and the channel
on the second hop is affected by Rician, rather than Rayleigh,
fading. Note that such an asymmetric channel model can be
seen as a generalization of the traditional two-hop Rayleigh
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fading channel, since Rayleigh fading can be considered as a
limiting case of Rician fading.

In the first of the above asymmetric scenarios (i.e., a relay
close to the source), the analysis of the system performance
is trivial. Much more challenging, instead, is the case where
the channels of the two hops are modeled as Rayleigh and
Rician, respectively. This second scenario has indeed attracted
significant attention in the literature. In particular, [4]provides
an exact expression of the moment generating function and
the moments of the instantaneous signal-to-noise ratio (SNR),
under the assumption that an orthogonal space-time block
coding scheme is applied. In [5], the network performance is
studied assuming that the relay is equipped with a single an-
tenna. To the best of our knowledge, no analytical expression
instead exists for the ergodic capacity in a AF MIMO relay
network over asymmetric fading channels in the presence of
a multiple-antenna relay node. In this letter, we thereforefill
this gap. By using finite-dimensional random matrix theory,we
provide a closed-form expression of the unordered eigenvalue
distribution of the cascaded asymmetric relay channel when
the two hops are characterized by Rayleigh and Rician fading,
respectively. Through this expression, we also derive an ana-
lytical expression of the ergodic capacity of the system, with
arbitrary-rank means of the Rician channel. Furthermore, by
numerical simulation, we investigate the network performance
as the Rician factor and the SNR vary.

II. N OTATION AND DEFINITIONS

Throughout the paper, matrices are denoted by uppercase
boldface letters, and vectors by lowercase boldface.E[·] de-
notes statistical expectation,(·)H is the conjugate transpose
operator, and| · | and Tr{·} denote, respectively, the deter-
minant and the trace of a square matrix. Also, we indicate
with {aij} the matrix whose elements areaij . Γm(a) is the
complex multivariate Gamma function defined in [6] as

Γm(a) = πm

m∏

ℓ=1

Γ(a− ℓ+ 1) ,

whereΓ(·) indicates the standard gamma function andπm =
πm(m−1)/2. We also denote byIm them×m identity matrix.

Let A be anm × m Hermitian matrix with distinct non-
negative eigenvaluesa1, . . . , am, sorted in descending order,
and let F = {fi(aj)}, i, j = 1, . . . ,m, be anm × m
matrix where thefi(·) are arbitrary differentiable functions.
We denote byV(A) the Vandermonde determinant ofA, i.e.,

V(A) =
∏

1≤i<j≤m

(ai − aj) .
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When the eigenvalues ofA are not distinct,V(A) = 0 and
|F| = 0. However, for any integer0 < n < m [7, Lemma 5],

lim
an+1,...,am→a

|F|
V(A)

=
πmΓn(m)

πnΓm(m)

|F̃|
V(Ã)

|Ã − aIn|n−m , (1)

where Ã is of size n × n and has eigenvaluesa1, . . . , an,
whereas

(F̃)ij =

{
fi(aj) i = 1, . . . ,m; j = 1, . . . , n

f
(m−j)
i (a) i = 1, . . . ,m; j = n+ 1, . . . ,m

with f
(k)
i (·) denoting thek-th derivative offi(·).

The generalized hypergeometric function is denoted by
pFq(a;b;X ), wherea = [a1, . . . , ap]

T, b = [b1, . . . , bq]
T,

andX represents a set of arguments that can be either scalars
or square matrices. In the case of a scalar argumentX = {x},
the hypergeometric function is defined as [6]

pFq(a;b;x) =

∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

xk

k!
,

where(a)k = Γ(a+k)/Γ(a) denotes the Pochhammer symbol.
When X = {Φ,Ψ}, with Φ and Ψ both of sizem × m,
pFq(a;b;X ) can be written through hypergeometric functions
of scalar arguments as [8, eq. (2.34)]

pFq(a;b;Φ,Ψ) = c
|{pFq(ã; b̃;φhψk)}|

V(Φ)V(Ψ)
h, k = 1, . . . ,m.

(2)
In (2), the constantc is given by

c =
Γm(m)

πq−p+1
m




q∏

j=1

Γm(bj)

(bj −m)!m




[
p∏

i=1

(ai −m)!m

Γm(ai)

]
,

ãi = ai −m+1, i = 1, . . . , p, b̃j = bj −m+ 1, j = 1, . . . , q,
and the eigenvalues ofΦ andΨ are denoted byφ1, . . . , φm

andψ1, . . . , ψm, respectively.

III. SYSTEM MODEL

We consider a two-hop relay network where the source,
the relay and the destination nodes are equipped withn, r
andm antennas, respectively. All nodes operate in half-duplex
mode. We assume that no direct link exists between the source
and the destination. The destination has perfect channel state
information (CSI) on the source-relay and relay-destination
channels, while the source and relay have no CSI.

Following [2] and [3], we assume that data transmission
takes place in two phases, according to the following scheme.
In the first phase, the source transmits signalx, which is a vec-
tor with n components, towards the relay. The entries ofx are
assumed to be i.i.d., zero-mean, circular symmetric, complex
Gaussian random variables and the power irradiated by each
antenna is assumed to be equal toρ/n, i.e.,E[xxH] = ρ/nIn,
whereρ is the signal-to-noise ratio. In the second phase, the
relay simply forwards a scaled version of the signal it has
received from the source. LetH1 ∈ C

r×n be the channel
matrix between the source and the relay, andH2 ∈ Cm×r

be the channel matrix between the relay and the destination.
Then the signal received at the destination can be written as

y = H2AH1x + H2Anr + nd , (3)

whereA =
√
aIr is an r × r linear transformation matrix

representing the power amplification at the relay, andnr and
nd are, respectively, the noise vectors at the relay and at the
destination, whose entries are modeled as i.i.d. zero-mean,
unit-variance, Gaussian random variables. Note that the above
assumption onA reflects the case where the relay has no CSI.

The source-relay channel is assumed to be affected by
Rayleigh fading. Thus, the entries ofH1 are i.i.d complex
Gaussian random variables with zero mean and unit variance.
Instead, the relay-destination channel is assumed to be affected
by Rician fading so that the entries ofH2 can be written as

H2 =

√
κ

κ+ 1
H̄2 +

√
1

κ+ 1
H̃2 , (4)

whereκ is the Rician factor,̄H2 is deterministic and the entries
of H̃2 are i.i.d. complex Gaussian with zero mean and unit
variance. For simplicity of notation, we definẽκ , 1 + κ.

Let q = min(r,m), s = min(n, q), Λ = diag(λ1, . . . , λq)
be the non-zero eigenvalues ofH2H2

H. Then the ergodic
capacity1 of the AF-MIMO relay channel described above is
given by [3, eq. (13)]

C(ρ) =
s

2

∫ ∞

0

log2

(
1 +

ρa

n
z
)
p(z) dz , (5)

wherez denotes an unordered eigenvalue of the random matrix
Z = HHBH andp(z) denotes the probability density function
(pdf) of z. In the expression forZ, H is ann×q random matrix
with i.i.d, circularly symmetric, complex Gaussian entries with
zero mean and unit variance, andB = Λ(I+aΛ)−1 is aq×q
diagonal matrix.

IV. PERFORMANCE ANALYSIS

The ergodic capacity of the AF-MIMO channel described
above can be obtained by deriving a closed-form expression
for p(z) and plugging it into (5). In order to do so, we
first assume the LoS component of the Rician channel (i.e.,
H̄2) to be full-rank; this case is referred to as “non-i.i.d.
Rician fading” in [9] and allows for relatively simpler analysis
(Section IV-A). Then we will deal with the case wherēH2 is
low-rank (Section IV-B).

A. Closed-form expression for the ergodic capacity

The pdf of the unordered eigenvalue ofZ = HHBH, with
H andB as defined above, can be written as

p(z) =

∫

B

pz|B(z|B)pB(B) dB , (6)

wherepz|B(z|B) is the pdf ofz conditioned onB and can be
written as [3, eq. (95)]:

pz|B(z|B) =
1

sV(B)

q∑

k=q−s+1

zn+k−q−1

Γ(n− q + k)
|Vk| . (7)

1It can be seen that by applying a whitening filter, the output can be
rewritten asy = bHx+n, for which the capacity is achieved with a Gaussian
codebook.
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In (7), V is a q × q matrix with entries given by:

(Vk)i,j =

{
bq−j
i , q − j + 1 6= k

e−z/bibq−n−1
i , q − j + 1 = k .

An expression forpB(B) is given by the proposition below.
Proposition 1: Consider a communication system and ma-

trix B as described above. Then the pdf ofB is given by

pB(B) =
κ̃pqV(B)|B|p−q|I− aB|−p−1|F|

(p− q)!qeTr{κ̃B(I−aB)−1+κM}V(κ̃κM)
, (8)

whereF = {0F1(; p − q + 1;κκ̃µibj/(1 − abj))} and M =
H̄2H̄2

H.
Proof: Note thatH2 = Ĥ/

√
κ̃, whereĤ =

√
κH̄2 + H̃2

is a standard noncentral Wishart matrix with mean
√
κH̄2.

The joint pdf of the ordered eigenvalues,Λ̂, of ĤHĤ is given
by [6, eq. (102)]; using (2), it can be written as:

pbΛ
(Λ̂) =

|Λ̂|p−qV(Λ̂)|{0F1(; p− q + 1;κµiλ̂j)}|
(p− q)!qeTr{bΛ+κM}V(κM)

, (9)

whereµi, i = 1, . . . , q, are the eigenvalues ofM = H̄2H̄2
H

and Λ̂ is a diagonal matrix whose elements areλ̂j , j =
1, . . . , q. The pdf ofΛ can then be obtained as

pΛ(Λ) = κ̃qpbΛ
(κ̃Λ)

=
κ̃pqV(Λ)|{0F1(; p− q + 1;κκ̃µiλj)}|
(p− q)!q |Λ|q−peTr{κ̃Λ+κM}V(κ̃κM)

.(10)

SinceB = Λ(I + aΛ)−1, the pdf ofB can be written as a
function of the pdf ofΛ, i.e.,pB(B) = |I− aB|−2pΛ(B(I−
aB)−1), which yields (8). In the derivation of (8), we have
exploited the propertyV(B(I− aB)−1) = V(B)|I− aB|1−q.

Then we replacepB(B) in (6) with the expression in (8) and
obtain the result below.

Proposition 2: The pdf of an unordered eigenvaluez of
Z = HHBH is given by

p(z) =
A

V(M)

q∑

k=q−s+1

zck−1

Γ(ck)
|Wk| , (11)

whereck = n− q + k, the constantA is given by

A =
κ̃pqe−κTr{M}

s(p− q)!q(κκ̃)q(q−1)/2
, (12)

andWk is a q × q matrix whose entries are as follows:

(Wk)i,j =

j−1∑

h=0

(
j−1

h

)
Γ(dj,h)1F1(dj,h; p− q + 1;κµi)

a−hκ̃dj,h
(13)

for i, j = 1, . . . , q, j 6= q − k + 1 and

(Wk)i,j =
2e−za

κ̃p−n

∞∑

ℓ=0

n∑

h=0

(
n
h

)
(κµi)

ℓ(zκ̃)gℓ,h/2

a−hκ̃hℓ!(p− q + 1)ℓ
Kgℓ,h

(2
√
zκ̃)

(14)
for i = 1, . . . , q, j = q − k + 1, wheredj,h = p+ 1 − j + h
andgℓ,h = p−n+ ℓ+h. In (14),Kv(x) denotes the modified
Bessel function of the second kind.

Proof: As mentioned above,p(z) can be computed by
using (8) in (6). As for the integration domain, we observe that
the i-th eigenvalue ofH2H2

H, λi, is such that0 ≤ λi < +∞.

Thus, bi = λi/(1 + aλi) has support in[0, 1/a]. Moreover,
the expression ofpB(B) provided in (8) refers to theordered
eigenvalue distribution ofB, hence the integral in (6) should
be taken under the constraint0 ≤ bq < . . . < b1 ≤ 1/a. By
substituting (7) and (8) in (6), we obtain:

p(z) =

q∑

k=q−s+1

Azck−1

V(M)Γ(ck)

∫ |I− aB|−p−1|F||Vk| dB
|B|q−peTr{κ̃B(I−aB)−1}

(15)

=
A

V(M)

q∑

k=q−s+1

zck−1

Γ(ck)
|Wk| , (16)

where the constantA is given by (12) andck = n−q+k. The
q × q matrix Wk in (16) derives from the application of [10,
Corollary 2] to the integral in (15) and its entries are givenby

(Wk)i,j =





∫ 1
a

0

e
−κ̃x
1−axxp−jfij

(1 − ax)p+1
dx, j 6= q − k + 1

∫ 1
a

0

e
−κ̃x
1−ax

−z/xfij

x1−p+n(1 − ax)p+1
dx, j = q − k + 1

(17)
wherefij = 0F1(; p−q+1;κκ̃µix/(1−ax)) has been defined
below (8). The integrals in (17) can be solved by changing the
integration variable intox = y/(κ̃ + ay) and by expanding
the powers of the binomial̃κ + ay. As a result, after some
computations (omitted for lack of space), the matrixWk can
be rewritten as in (13) and (14).

Eventually, the analytical expression for the ergodic capacity
can be obtained by substituting (11) into (5).

B. Low-rank LoS Rician fading component

We now consider the case where the LoS component of the
Rician channel,H̄2, does not have full rank, i.e., the terms
|Wk| andV(M), respectively, at the numerator and denomi-
nator of (11) vanish, thus leading to a0/0 indeterminate form.
In order to circumvent this problem, a limit must be taken,
which can be evaluated using l’Hôpital’s rule. In particular, in
the following we assume that̄H2

HH̄2 has0<g<q non-zero
eigenvalues, i.e.,µg+1 = µg+2 = · · · = µq = 0. Then the pdf
of an unordered eigenvaluez of Z = HHBH can be derived
by taking the following limit:

p(z)low = lim
µg+1,...,µq→0

p(z)

= A

q∑

k=q−s+1

zck+1

Γ(ck)
lim

µg+1,...,µq→0

|Wk|
V(M)

=
πqΓg(q)

πgΓq(q)

|W̃k|
V(M̃)

|M̃|g−q , (18)

where we have used the result reported in (1). In (18),M̃

is a g × g matrix with eigenvaluesµ1, . . . , µg and W̃k is a
q × q matrix whose(i, j)-th entry is given by(Wk)i,j , for
i = 1, . . . , g andj = 1, . . . , q;

(
W̃k

)
i,j

=

j−1∑

h=0

(
j−1
h

)
Γ(dj,h + q − i)κq−i

(p− q + 1)q−ia−hκ̃dj,h
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for i = g + 1, . . . , q, andj 6= q − k + 1; and

(
W̃k

)
i,j

=
2e−za

κ̃p−n

n∑

h=0

(
n
h

)
κq−i(zκ̃)gq−i,h/2

a−hκ̃h(p− q + 1)q−i
Kgq−i,h

(2
√
zκ̃)

for i = g + 1, . . . , q, j = q − k + 1. This result has been
obtained by taking the derivativeq − j times (with respect
to µj) of the (i, j)-th entry of Wk and by evaluating it in
µj = 0, for i = 1, . . . , q and j = g + 1, . . . , q. The other
entries ofWk have been left unchanged. Again, the expression
for the ergodic capacity for the low-rank LoS Rician fading
component can be obtained by substituting (18) into (5).

V. NUMERICAL RESULTS

We now validate our analytical derivations through Monte
Carlo simulation, and show the information theoretic perfor-
mance of the channel of (3). We considern = 2, r = 3,
m = 4, and the Rician channel with with LoS matrix that
satisfiesTr{H̄2

HH̄2} = rm. More specifically, in Figs. 1
and 2 we have employed both the full-rank LoS matrixH̄

f
2

and the low-rank LoS matrix̄Hl
2, given by

H̄
f
2 =

1√
2




1
√

2 2

1 1
√

2

1
√

3 1

1
√

2
√

5


 ; H̄l

2 =




1 1 1
1 1 1
1 1 1
1 1 1


 .

While computing (5) and (6), we upper bound the integration
variablesz and λ so as to obtain an expression that can
be efficiently computed. In numerical simulation, an accurate
result can be obtained already forλ ≤ 20 andz ≤ 100.

Figure 1 shows the excellent match between the pdf ofz,
p(z), computed through the analytical expression in (6) and
the results obtained via Monte Carlo simulation. In particular,
the top plot showsp(z) for the full-rank LoS component, as
the Rician factorκ and the SNR (ρ) vary. It also compares
our result to that provided in [3] for the Rayleigh-Rayleigh
channel. As expected, asκ decreases,p(z) converges to that
obtained for Rayleigh-Rayleigh channel (κ = 0). The bottom
plot presents the same comparison between analytical and
simulation results considering the low-rank LoS component.
With respect to the full-rank LoS case, we note a higher
concentration ofp(z) for smallerz’s, which leads to a lower
ergodic system capacity in the low-rank LoS case, as shown in
Figure 2. The latter depicts the ergodic capacity of the relay
system computed through (5) and Monte Carlo simulation,
for different values ofκ and rank of the LoS component.
Again, analytical and numerical results are remarkably close.
The fact that the lower the Rician factor is, the higher the
ergodic capacity becomes, confirms the validity of our results.

VI. CONCLUSION

We have investigated the ergodic capacity performance
of AF MIMO relay networks over asymmetric Rayleigh-
Rician channels. We derived a closed-form expression for the
marginal pdf of an unordered eigenvalue of the cascaded AF
channel for the two cases where the Rician channel has full-
rank and low-rank means. Using these analytical expressions,
we derived the ergodic capacity of the system. Our analysis
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Fig. 1. Exact analysis vs. Monte Carlo simulation: pdf of an unordered
eigenvaluez, for full-rank (top) and low-rank (bottom) LoS component.
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was validated by showing the excellent match between the
results obtained through our exact expressions and those
obtained via Monte Carlo simulation.
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