Dynamic Resource Discovery Protocol for Software
Defined Networks

Yury Jiménez, Cristina Cervell6-Pastor, Member, IEEE, and Aurelio Garcia

Abstract—In Software Defined Networking (SDN), the network
management is logically centralized but physically distributed
among the controllers in order to improve the scalability com-
pared with a completely centralized model. As an alternative to
managing the network state in SDN in a distributed way, this
work proposes a distributed protocol called SDN Resource Dis-
covery Protocol (SDN-RDP). This protocol divides and distributes
the network management among the controllers. In essence,
each controller discovers a portion of the network topology
creating a minimum-latency tree rooted at each controller, thus
creating the control layer. Through the delay-constrained shortest
paths, henceforth called control channels, the controllers collect
network state information from nodes, and decide and distribute
the forwarding decisions to them. This process is asynchronous
since there is no global initialization process to activate the
execution of the protocol, and knowledge about the network is
not required. Simulation results show that the proposed protocol
works efficiently on large networks in terms of time and load.

Index Terms—Software Defined Networking (SDN), con-
trollers, Resource Discovery Protocol (RDP), control layer, tree.

I. INTRODUCTION

N Software Defined Networking (SDN) the network intel-

ligence is delegated to a set of centralized servers called
controllers, which abstract the information of the underlying
network topology. It has been demonstrated that the controller
scalability is affected by the number of requests that they man-
age and the latency between them and the nodes [1] [2]. Most
of the approaches assume that the centralized controller use
Link-Layer Discovery Protocol (LLDP) for detecting changes
on network topology and make available physical topology
information for controllers. However, this protocol does not
distribute the load among controllers by itself, it just keeps
updated the network state on them. Despite the critical role of
topology information in enhancing the manageability of SDN
networks, to the best of our knowledge, none of the proposed
network management platforms offer a general-purpose tool
for distributing both the discovery and management of the
physical network among the controllers [3]. In this work, we
propose the SDN Resource Discovery Protocol (SDN-RDP),
a protocol that allows to the controllers discover the network
topology and distribute its management by themselves.

The remainder of this letter is organized as follows. Section
IT describes the notation needed to formulate the proposed

The authors are with the Department of Telematics Engineering, Polytech-
nic University of Catalonia, Esteve Terradas, 7, 08860, Castelldefels, Spain,
e-mails: {yury.jimenez;cristina;aurelioj.garcia} @entel.upc.edu

This work has been supported by the Ministerio de Economia y Competi-
tividad of the Spanish Government under project TEC2013-47960-C4-1-P.

protocol. Section III describes the SDN Resource Discovery
Protocol and its complexity. Section IV is devoted to the
analysis of the protocol through simulations. Finally, Section
V presents the conclusions.

II. FORMULATION

Consider a physical network that is modeled using a graph
denoted by the tuple G = (V, E), where V is partitioned into
the set of nodes n and controllers C', and F is the set of links.
Then, C' = {C1,...,Cy} is the set of distributed controllers
that defines the control layer. The set of adjacent neighbours of
each node 7 € V is defined by V,. The control layer created by
each controller C; is defined as G¢, = (nc,, ec,), where n¢, C
n is the set of nodes managed by the controller C; C C, and
ec, € E is the set of links that defines the control channels.
The global control layer is defined by the set of control layers
built by the controllers, Gc = {G¢,,Gc,, ---, Gc,, }-

III. SDN RESOURCE DISCOVERY PROTOCOL

The process of creating the control layer is executed in two
phases, the forwarding phase where the controllers announce
their presence and the nodes that start the creation of the
control channels (leaf nodes) are discovered, and the backward
phase where the nodes decide which node to join in direction
of a controller, thus creating the control layer. Below, the in-
band control messages used by SDN-RDP are described.

o Announcement messages (AN): Controllers and nodes an-
nounce events through these messages. The controllers an-
nounce their presence to the network (message Type 0), and
the nodes announce network changes (e.g., broken links,
node failures, etc) to the controllers (message Type 1).

o Response messages (RES): These messages are used to
create the control channels. Nodes send a join message
(RES_JOIN) to join to a parent node, and a leave message
(RES_LEAVE) to announce to their neighbours that the
node has already been joined to a node.

o Improved Announcement messages (IAN): By sending
these messages the nodes can announce to their neighbours
that a nearer path to a controller has been discovered.

A. Forwarding Phase (FP)

To build the control layer each controller advertises its
presence by forwarding an AN message to all their V; adja-
cent nodes. This message contains information concerning the
controller identifier, the sender node identifier and its latency
to the controller. We consider that nodes discover their adja-
cent neighbours and the latency to them by exchanging Hello

messages. Upon receiving the first AN message, the nodes
update the packet fields and forward the message through
every outgoing interface except that which the message was
received. This process is repeated for each node, consequently
the AN messages are distributed all over the network.

The nodes that receive at least one AN message through all
their neighbours stop forwarding this message. Consequently,
these nodes discover the latency to a controller through each
one of their (INV;) neighbours, and they become a discovered
node. Let D,, = {D1, D5 ...} be the set of discovered nodes
in G. These nodes based on the known information can find
out if the latency of any N; node can be improved via another
neighbour. When a node 7 € D,, discovers that through node
k € N, the known latency of node j € N, to a controller
can be reduced, it forwards an /AN message to node j
announcing that a better path to a controller has been found.
This message is retransmitted back hop-to-hop as long as it
encounters a node that can not improve its latency through this
path. Upon receiving this message, the nodes update the delay
and sender identifier fields in the message. The discovered
nodes that cannot improve the latency of any neighbour to
a controller are called leaf nodes. The set of leaf nodes is
defined as L, = {Li,Lo,...}, where L, C D,. These
nodes determine the minimum latency possible to a controller
Cy € C, and initiate the control layer construction process
(backward phase).

On the other hand, nodes that have not received one AN
message through all their neighbours wait for the answer to the
AN messages sent through each interface. This answer can be
an I AN message or a RES message. The nodes that become
discovered nodes can make a decision as explained below in
the backward phase. In this context, the TAN message has
2 purposes, i) discover the leaf nodes, and ii) discover the
nearest controller from each node. Given that the controllers
are not synchronized, we consider that the controllers that
have not started the network discovery process initiate the F'P
when receiving one AN message. In this way, the protocol
guarantees that the node management is distributed among all
the controllers, besides simplifying the SDN-RDP resolution.

B. Backward Phase (BP)

In this phase the nodes decide to which node to join, leading
backwards in the direction of a controller, and as a result,
a control layer G¢, on top of each controller C; C C' is
created. This process starts from the leaf nodes which send a
RES_JOIN message to their neighbour node that is nearest
to a controller and a RES_LEAV E message to the rest of
the adjacent nodes.

In order to ensure the discovered control channels are the
shortest ones and also that all nodes are managed, only the
nodes that i) have received a response message to the sent
AN messages, and ii) can not improve the latency of any node
k € N, can decide which node to join in the direction of a
controller. Therefore, the nodes that satisfy these conditions
have to update their identifier into the received RES_JOIN
message and forward it to their best neighbour. Consequently,
the RES_JOIN messages converge on the controllers, which
receive (at most) a join message from each N; adjacent node.

Algorithm 1 Forwarding Phase for node ¢

Require: At least one controller has started the F'P, and node 4
knows its adjacent neighbours and the delay to them, d(i,)
d(k,Cx) = 0 < delay from each node k € N; to a controller
C,eC
if it has received one AN or a RES message then

update local delay information, d(k, Ck)
if this is one AN message and this is the first AN received
then
forward the message through every outgoing interface except
those which:
i) the message was received and,
ii) connect to neighbours whose identifiers were included in
this message
else
if it has received at least one AN or one RES message from
all its neighbours then
change state to discovered node
end if
end if
else
if it has received an /AN message or state is discovered node
then
for each node k € N; from which an AN or IAN message
was received do
if d(k,Cy)+d(i, k) < d(j,Cm)+d(i,j)Vj € Ni, j #k
where j are the nodes from which an AN message was
received then
send an JAN message to node j
update local delay information, d(j, C;)
else
change state to leaf nodes
end if
end for
end if
end if

There are two situations that prevent condition (i) can be
fulfilled. These are: 1) forwarding conflicts and 2) network
failures. These cases, as well as the proposed solution, are
explained below.

1) Forwarding Conflicts: As nodes work asynchronously,
during the forwarding phase some nodes ¢ and j can receive
and forward over the same link (¢,5) an AN message. This
fact causes that the involved nodes may wait indefinitely for
a response from each other to make a decision in the BP.
Consequently, these nodes can not take any decision, stopping
the control channel building. In order to solve this problem,
conditions (1) and (2) have been defined. These conditions are
evaluated independently by each node. By evaluating (1) each
node ¢ and j discovers if the latency to the known controller
can be improved through its neighbour.

d(i,C'm) < d(j7 Cl) + d(i,j), (1)

where Cp,,C; € C and d(i,7) is the latency in link (g, 7).
Thus, if condition (1) is true for node ¢, it will decide that
the path to the controller C,, is better than the path to the
controller C; through the neighbour j. In this case, the AN
message sent by the neighbour j is unanswered and becomes
an implicit RES_LEAV E message. Thus, node i does not
need to send the RES_LEAV E message. If condition (1) is
false for node 4, it will decide that the path to controller C}

through node j is better than the path to controller C,,. In this
case, it will not wait for a response from j to make a decision.
By evaluating condition (2) node ¢ knows the decision made
by node j without any dialogue between them. If condition
(2) is true for node i, it will not wait for a response because it
knows that node j will join another node. On the other hand,
if condition (2) is false for node ¢, it will wait for a response
from node j.

These conditions are valid if both controllers are the same
or even if they are different. By evaluating these conditions,
each node discovers which is its best neighbour leading to the
nearest controller. In this way, the local conflicts are resolved
implicitly without generating any additional traffic and in a
minimum time. These conditions also ensure that no cycles
exist in the control layer.

2) Failures: Network failures can prevent the nodes
receiving the response messages and, as a result, being unable
to make a decision. In order to avoid this situation, a timer
is activated after the first response message is received by a
node. Therefore, if after a time ¢ the node has not received
a response from an adjacent neighbour, it assumes that the
latency to a controller through this neighbour is infinite. After
that the node can decide to which parent node to join.

Each RES_JOIN message received by the controller
contains the sequence of node identifiers in the control chan-
nel. This information has a general tree structure, which
is converted to a binary string and forwarded in a linear
sequence. In this way, each control layer G¢, is built hop-to-
hop from the leaf nodes to a controller. After receiving each
RES_JOIN message, the controllers forward a HELLO
message to each node contained in the message in order to
negotiate the secure connection setup, which is answered with
the same message from each switch. As a result, the control
channel between each node and a controller is established, this
channel is used by the nodes to announce their information
about node connectivity (N;) and the controller to which its
neighbours have been joined. By aggregating this information
the controllers can discover their partial network topology and
the control channels among them.

C. Protocol complexity

The complexity of SDN-RDP is defined in terms of time
and number of messages to create the control layer Gc.
Given a network of N nodes and k controllers, the network
discovery time is defined by the mean number of nodes
assigned to each controller, N, = [%], the mean number
of neighbours per node, D, and the average time (¢;) defined
as the sum of propagation delay (f,) and transmission time
(tiz). Thus, the maximum time to create G¢ is defined by
2 x N./D x t;, assuming that the node processing time is
negligible. Therefore, the time complexity is O (). On the
other hand, the upper number of messages per controller is
bounded by k x D + (N — k) [2 x (D — 1) 4 1], considering
that just one AN message is sent by each controller through

Algorithm 2 Backward Phase for node ¢
Require: Node knows its state; d(k, C)) < delay from each k €

N; to a controller C, € C
if state is discovered node then
if it has sent and received through the same interface an AN
message then
evaluate d(i, Cr,) < d(4,C1) + d(i, 5)
evaluate d(j,C) < d(i,Cp) + d(i, 5)
decide the (implicit or not) response
end if
end if
if state is leaf node or discovered node and it has received a
response message or an implicit response message then
forward a RES_JOIN message to the nearest adjacent node
to a controller and a RES_LEAV E to the rest of the nodes
(if it is not implicit)
end if

each one of its output interfaces, the nodes forward an AN
message just one time, and the nodes respond to all of the
received AN messages. Therefore, the message complexity is
O(ND).

IV. SIMULATION AND RESULTS

We have implemented our complete solution from scratch
in OMNET++. In order to show the scalability and efficiency
of our protocol, we have evaluated the time and number of
messages required to create the control layer over a set of
randomly generated graphs of different sizes while varying
the number of controllers. In all these cases we assume a
link capacity between 100 Mbps to 10 Gbps and the distances
between any pair of nodes are selected randomly in a range
of 1 to 15 Km. The placement of the controllers was selected
by using k — Critical approach [4]. This approach selects
the controllers to ensure that the management of the whole
network is guaranteed while satisfying a maximum delay
between each node and its controller. We present the simu-
lation results for the SDN-RDP together with their respective
95% confidence intervals based on Student-t distribution. The
adjacency matrices for these graphs are generated by using the
Gephi software. It generates networks with a given number
of nodes n, which are randomly connected by undirected
edges. For a random pair of nodes, there is a probability p
(wiring probability), where 0 < p < 1, that there exist a
link connecting them. This implies that the degree of random
graphs generated using a fixed value of p increases when
n increments. Table I shows the main characteristics of the
generated networks, all of them were generated using a wiring
probability of 0.05.

[Size | Avg. Number of links | Avg. Node degree |

50 65 3

100 253 5

200 994 10

500 6243 25
TABLE T

SIMULATED NETWORKS.

A. Results

In order to show the basic operation of our protocol
and evaluate its performance in a controlled scenario, the
controllers run the SDN-RDP protocol simultaneously. Fig.
I(a) and 1(b) show that networks with high connectivity (or
density) process a higher number of messages per each node
than networks with low connectivity, and also reduce the
control layer creation time with respect to networks with low
connectivity. In networks with high connectivity, the number
of forwarding hops of the messages decreases because the
network diameter is small. Thus, the AN messages are quickly
spread, discovering the leaf nodes in few hops. Networks with
low connectivity reduce the message conflicts in the network,
but increase the construction time of the control layer since
the diameter is large. That is, the convergence time of the
response messages to the controller is limited by the longest
delay time of all the shortest paths found. In this scenario, for
each network size, the average number of messages on each
node remains constant even if the number of controllers is low
(Fig.1(a)). This is because, i) conflicts are solved using implicit
response messages and ii) JAN messages are not required as
nodes receive the AN message through their shortest path. We
have also evaluated the implications of the controller selection
in the SDN-RDP performance. Fig. 2 shows the control layer
creation time for different number of controllers selected ran-
domly (dashed lines) and using k — Critical (solid lines). As
can be seen in Fig. 2, the control layer creation time required
by controllers selected randomly was significantly higher than
the time spent by controller selected using k-Critical in all
cases. As controllers selected randomly may be geographically
close or far way among them, some controllers may have more
load than others, increasing the creation time of the control
layer and therefore affecting the SDN-RDP performance. The
average number of messages on each node, for each network

25 - - B e |

20 4

Avg No of Msg per Node
&

4 5
Number of Controllers

160
£ 140
()
E
= 120
=
S
©
£ 1004
[}
£
8 804
60
‘ ‘ : ‘ ‘ ‘ ‘ ‘
1 2 4 5 6 7 8
Number of Controllers
Fig. 1. Networks with different sizes, varying the number of k-Critical

controllers.

zzg T k-Critical Random
= 240 —=— 5N -G- 50N
E. . —e— 100N --0- 100N
o o
E 200 < —A— 200N -4- 200N
g 1801 =R —+— 500N -<©- 500N
g .
>
o
€
o
o

Number of Controllers

Fig. 2. Control layer computation time; CI are omitted to improve readability.
(Different number of nodes, k-Critical and randomly selected controllers.)

size, is slightly higher when the control layer is created by
controllers selected randomly, but in both cases (controller
selected randomly and using k-Critical) the average number
of messages are remained constant on the nodes. SDN-RDP
has been designed to be scalable over a wide range of network
sizes. Presented results indicate that, for a given network, the
average number of required messages to create the control
layer is invariant with respect to the number of controllers
for networks of any density. With respect to the control layer
computation time, improvement in the case of networks with
low connectivity is only observed when multiple controllers
are used. However, the control layer creation time is reasonable
even when using just 1 controller. According to the evaluation,
we can deduce that the resulting control layers deal with
real network requirements. For instance, the data layer fault
recovery may be achieved in a scalable way within 50 ms, the
time required in transport networks. This topic will be further
explored in the future work.

V. CONCLUSIONS

We have presented the SDN-RDP protocol that distributes
and divides the network management among controllers cre-
ating a control layer on top of any physical topology. The
resulting control layer has a tree topology, through the shortest
paths or control channels the network can be discovered,
monitored and time-efficiently managed since the switches
are managed by their nearest controller. Although this work
only takes into account the delay other parameters may be
considered when building the control layer.

REFERENCES

[1] S. Hassas, A. Tootoonchian, Y. Ganjali. “On Scalability of Software-
Define Networking,” IEEE Commun. Mag., vol. 51, no. 2, pp. 136-141,
Feb. 2013.

[2] M. Reitblatt, N. Forter, J. Rexford and et al., “Consistent updates for
software-defined networks: change you can believe in!,” ACM SIGCOMM
Workshop HotNets, pp. 1-6, Nov. 2011.

[3] B. Nunes, M. Mendonca, X. Nguyen, and T. Turletti, “A Survey of
Software-Defined Networking: Past, Present, and Future of Programmable
Networks,” IEEE Communications Surveys & Tuts., vol. 16, no.3, pp. 1-
18, 2014.

[4] Y. Jiménez, C. Cervello-Pastor, and A. Garcia, “On the controller
placement for designing a distributed SDN control layer,” in Proc. Conf.
IFIP Netw, Trondheim, Norway, Jun. 2014.

