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Abstract

We consider the problem of Linear Programming (LP) decodingof binary linear codes. The LP
excess lemma was introduced by the first author, B. Ghazi, andR. Urbanke (IEEE Trans. Inf. Th., 2014)
as a technique to trade crossover probability for “LP excess” over the Binary Symmetric Channel. We
generalize the LP excess lemma to discrete, binary-input, Memoryless, Symmetric and LLR-Bounded
(MSB) channels. As an application, we extend a result by the first author and H. Audah (IEEE Trans.
Inf. Th., 2015) on the impact of redundant checks on LP decoding to discrete MSB channels.

1 Introduction

In 2003, Feldman [1] introduced Linear Programming (LP) decoding as a relaxation of Maximum Likeli-
hood (ML) decoding. The good performance of LP decoding of LDPC codes and its relation to iterative
decoding was established in multiple studies such as [2, 3, 4, 5] (a comprehensive survey is found in [7]).

The LP excess lemma was introduced and established in [6] in the context of the Binary Symmetric
Channel (BSC) as a technique to trade crossover probabilityfor “LP excess” when analyzing the LP decoder
error probability under the assumption that the all zeros codeword was transmitted. The lemma says that
if the LP decoder works on a slightly nosier channel, we can guarantee that it corrects a slightly shifted-
down version of the received LLRs. In dual terms, this implies the existence of a dual witness [4] where
the variable nodes inequalities are satisfied on the variable nodes with some constant positive “LP excess”.
The lemma was used to study the LP decoding thresholds of spatially coupled codes [6] and the impact of
redundant parity checks on the LP decoding thresholds of LDPC codes on the BSC [7].

In this paper we extend the LP excess lemma from the BSC to discrete, binary-input, Memoryless,
Symmetric and LLR-Bounded (MSB) channels. We define the channel model in Section 1.1 and we give
the needed background on LP decoding in Section 1.2. We stateand prove our main result in Section 2. As
an application, we use the extended lemma in Section 3 to extend the result of [7] to discrete MSB channels.

1.1 Channel model

We consider MSB channels: anMSB channel[3] is a binary-input Memorylesschannel where the input
alphabet is{0, 1} and the transition probability has aSymmetryproperty as well as aBounded LLRproperty.
For simplicity of the presentation, we assume that the channel is discrete, i.e., the output alphabetΣ is a
finite set (or a countably infinite set). The channel issymmetricin the sense that we have a partition ofΣ
into pairs(a, a∗), such thatPr(a|0) = Pr(a∗|1) andPr(a|1) = Pr(a∗|0). Thepairing is a bijective map
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∗ : Σ → Σ such thata∗∗ = a for eacha ∈ Σ. Thus the channel is fully specified by a tripletch = (Σ, p, ∗),
wherep is a probability distribution onΣ when0 was transmitted, i.e.,Pr(a|0) = p(a) andPr(a|1) = p(a∗).
The Log-Likelihood-Ratios (LLR)Lch(·) = L(·) is a real-valued map onΣ given by

L(a) = ln
p(a)

p(a∗)
.

Note thatL(a) = −L(a∗) for eacha ∈ Σ. We assume that the channel isLLR boundedin the sense
that‖L‖∞ is upper bounded by a constant. IfΣ is finite, LLR boundedness is equivalent top(a) 6= 0 for
all a ∈ Σ. We denote byµch = µ the LLR probability distribution given0 is transmitted, i.e.,µ is the
probability distribution ofL(a) wherea is sampled according top.

The importance of discrete MSB channels stems from the fact that they allow the decoder to use soft
quantized information. They include for example the BSC, the mixed BSC-erasure channel and the finitely-
quantized additive Gaussian-noise channel. The binary erasure channel is an example of a discrete symmet-
ric channel with possibly infinite LLRs.

We are interested in smalldistortionsof discrete MSB channels:

Definition 1.1 (Channel distortion). If ch = (Σ, p, ∗) is a discrete MSB channel andα > 0, we call
channelch′ anα-distortionof ch if ch′ = (Σ, p′, ∗) for some probability distributionp′ onΣ such that the
L1-distance

‖p− p′‖1 :=
∑

a

|p(a)− p′(a)| ≤ α.

Note that,ch′ shares withch the same paring map∗.

For instance, consider theβ-BSC channel with cross over probabilityβ. An α-distortion of theβ-BSC
is theβ′-BSC where|β − β′| ≤ α/2.

Notations. In this document we use a bold-faced notation to refer ton-dimensional vector: we transmit
a length-n binary stringx ∈ {0, 1}n and receivey ∈ Σn of x. Additionally, we denote bypn the product
distribution onΣn associated withp andµn the product distribution onRn associated withµ. Thus, if
x = 0, where0 is the all-zeros vector, theny is distributed according topn and the corresponding LLR
vector

γ = L(y) := (L(yi))
n
i=1 ∈ R

n

is distributed according toµn.

1.2 LP decoding

Let Q ⊂ F
n
2 be anF2-linear code with blocklengthn andch = (Σ, p, ∗) a discrete MSB channel. Consider

transmitting a codewordx ∈ Q overch, which outputsy ∈ Σn. The ML decoder ofQ is given by

ML(y) = argmax
x∈Q

PY|X(y|x).

In terms of the LLR vectorγ = L(y), the ML decoder is given by

MLQ(γ) = argmin
x∈Q

〈x,γ〉,

where〈x,γ〉 :=
∑

i xiγi.
Feldmanet al. [1, 2] introduced the notion of LP decoding, which is based onrelaxing the optimization

problem onQ into a LP. Due to the linearity of the objective function〈x,γ〉, optimizing overQ is equivalent
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to optimizing over the convex polytopeconv(Q) ⊂ R
n spanned by the convex combinations of the code-

words inQ. The idea of Feldman is to relaxconv(Q) into a larger lower-complexity polytope. In general
terms, anLP-relaxationof Q is aQ-symmetric convex polytopeP ⊂ [0, 1]n, whereQ-symmetrymeans that
(|xi − yi|)

n
i=1 ∈ Q, for eachx ∈ Q andy ∈ P [1]. Note thatQ-symmetry implies thatQ ⊂ P .

TheLP decoderis given by
LPP (γ) = argminx∈P 〈x,γ〉.

While useful constructions ofP are obtained from Tanner graph representations [1, 2], it issimpler to
establish the LP-excess lemma in the general framework ofQ-symmetric polytopesP ⊂ [0, 1]n. TheQ-
symmetry ofP implies that when evaluating the LP decoding error probability, we can assume without loss
of generality that the all-zeros codeword0 was transmitted [1]. Thusγ ∼ µn, whereµ = µch is the LLR
probability distribution given0. As in previous works [1, 2], we assume that the LP decoder fails if 0 is not
the unique optimal solution of the LP, i.e., theP -LP decodersucceedsonγ iff LPP (γ) = 0.

We say that the LP decodersucceeds with LP excessξ onγ if it succeeds onγ−ξ1, i.e.,LPP (γ−ξ1) =
0, where1 ∈ R

n is the all ones vector and(γ − ξ1)i = γi − ξ, for i = 1, . . . , n.
For constructions ofP from a Tanner graphs, LP excess can be interpreted in terms ofthe notion of a

dual-witness [4] as follows. In dual terms, theP -LP decoder succeeds with LP excessξ onγ iff γ−ξ1 has a
dual-witness, i.e.,γ has a dual-witness where each of the dual-witness variable nodes inequalities is satisfied
with “LP excessξ” (see Definition 2.1 and Theorem 2.2 in [7] for the equivalentdual characterizations of
LP decoding success).

When studying the LP decoding error probability as the blocklengthn tends to infinity, we consider an
infinite familyof F2-linear codesQ = {Qn}n and an associated infinite family of LP-relaxationP = {Pn}n.
We say that theP-LP decoder succeeds onch with high probability if

limn→∞ Prγ∼µn [LPPn
(γ) 6= 0] = 0.

We say that theP-LP decoder“succeeds onch with LP excessξ with high probability” if

limn→∞ Prγ∼µn [LPPn
(γ − ξ1) 6= 0] = 0.

2 LP excess lemma

In this section, we extend the BSC LP excess lemma [6] stated below to discrete MSB channels.

Lemma 2.1 ([6]). (BSC LP Excess Lemma: trading crossover probability with LPexcess)Consider the
β-BSC which crossover probability0 < β < 1/2. LetQ be an infinite family ofF2-linear codes andP an
associated family of LP-relaxations.
Assume that there existsβ < β′ < 1/2 such that theP-LP decoder succeeds on theβ′-BSC with high
probability.
Then, there exists aξ > 0 such that theP-LP decoder succeeds on theβ-BSC with LP excessξ with high
probability.

Lemma 2.2. (MSB LP Excess Lemma: trading channel distortion with LP excess)Letch be a discrete MSB
channel,Q an infinite family ofF2-linear codes andP an associated family of LP-relaxations.
Assume that there existsα > 0 such that for eachα-distortionch′ of ch, theP-LP decoder succeeds onch′

with high probability.
Then, there existsξ > 0 such that theP-LP decoder succeeds onch with LP excessξ with high probability.
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In proving the Lemma, we follow similar steps to those taken in [6]. The starting point in [6] is to
realize theβ′-BSC as a distortion of theβ-BSC resulting from the bit-wise OR of theβ-BSC error event
with an independent Bernoulli random variableB. The distorted channel operates according to the original
channel ifB = 0 and it produces an error ifB = 1. To generalize this construction, we use a similar
Bernoulli-induced distortion ofch. The key new ingredient is a construction of a probability distributionq
supported on the set of output symbols with negative LLRs. The distorted channelch′ operates according
to the original channel ifB = 0 and according toq if B = 1. A key property of the constructedq will be
that the LLR mapL′ of ch′ is a positive constant scale of that ofch, i.e., there exists a constantc ∈ (0, 1)
such thatL′(a) = cL(a) for all a ∈ Σ. This property will be essential in extending the argument of [6] to
our setup.

Proof of Lemma 2.2.The proof is based on the fundamental cone. LetCn ⊂ R
n be the fundamental cone [5]

of thePn-LP decoder, i.e., the set of all LLR vectors correctly decoded by the decoder:

Cn = {γ ∈ R
n : LPPn

(γ) = 0}.

SinceLPPn
(γ − ξ1) = 0 is equivalent toγ ∈ Cn + ξ1, our objective is to show that there exists aξ > 0

such thatµn(Cn + ξ1) = 1− on(1). The hypothesis of the theorem guarantees that for anyα-distortionch′

of ch, µ′n(Cn) = 1− on(1), whereµ′ = µch′ is the LLR probability distribution ofch′ given0.
By the definition of the LP decoder,Cn is the interior of the polar cone ofPn, i.e.,

Cn = {γ ∈ R
n : 〈γ,x〉 > 0 for each nonzerox ∈ Pn}.

We note that sincePn ⊂ [0, 1]n ⊂ (R+)n, Cn is closed under translation by vectors in the non-negative
quadrant, i.e.,Cn + (R+)n ⊂ Cn. We will argue thatξ exists using only the property thatCn ⊂ R

n is a
convex cone such thatCn + (R+)n ⊂ Cn.

Consider the partition ofΣ into three sets:

Σ− = {a ∈ Σ : p(a) < p(a∗)}

Σ0 = {a ∈ Σ : p(a) = p(a∗)}

Σ+ = Σ∗
−.

ThusL is negative onΣ−, zero onΣ0 and positive onΣ+. Without loss of generality, we assume thatΣ−

andΣ+ are nonempty (otherwise, the channel capacity is zero).
Let 0 < δ < 1 be a constant such thatδ ≤ α/2 and define channelch′ = (Σ, p′, ∗), wherep′ is the

distribution onΣ given by

p′(a) = δq(a) + (1− δ)p(a) if a ∈ Σ−

p′(a) = (1− δ)p(a) if a ∈ Σ0 ∪ Σ+,

and whereq is a probability distribution onΣ− that will be specified later. We will sample fromp′ as
follows. First we sample a Bernoulli random variableB ∼ Ber(δ) which takes the value1 with probability
δ. If B = 0, we sample fromp and if B = 1, we sample fromq. Channelch′ is anα-distortion ofch
because‖p − p′‖1 ≤ 2δ ≤ α. The LLR map ofch′ denoted byL′ is given by:

L′(a) = ln

[

δq(a) + (1− δ)p(a)

(1− δ)p(a∗)

]

if a ∈ Σ−,
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L′(a) = −L′(a∗) if a ∈ Σ+ andL′(a) = 0 if a ∈ Σ0. We chooseq so that there exists a constantc ∈ (0, 1)
such thatL′(a) = cL(a) for all a ∈ Σ which is guaranteed by enforcingL′(a) = cL(a) ona ∈ Σ−, i.e.,

δq(a) + (1− δ)p(a)

(1− δ)p(a∗)
=

(

p(a)

p(a∗)

)c

, a ∈ Σ−.

Solving forq(·), we get

q(a) =
1− δ

δ
p(a)

[

(

p(a∗)

p(a)

)1−c

− 1

]

, a ∈ Σ−.

Sincec ∈ (0, 1) and p(a∗) > p(a) for a ∈ Σ−, we haveq(a) > 0 on a ∈ Σ−. To guarantee that
∑

a q(a) = 1, we choosec ∈ (0, 1) so thats(c) = δ
1−δ

, where

s(c) :=
∑

a∈Σ−

p(a)

[

(

p(a∗)

p(a)

)1−c

− 1

]

.

This follows from the continuity ofs(·) as a function ofc and the facts thats(1) = 0 and

s(0) =
∑

a∈Σ−

p(a∗)−
∑

a∈Σ−

p(a) = p(Σ+)− p(Σ−) > 0,

sinceΣ+ andΣ− are assumed to be nonempty. In what follows, fixδ ∈ (0, 1) to be any constant such that
δ ≤ α

2 such that δ
1−δ

< p(Σ+)− p(Σ−) to guarantee the existence ofq andc.
In the remainder of the proof we follow the steps in [6]: we usean averaging argument followed by

Markov Inequality. For clarity, we will use capital lettersto refer to random quantities. Definef : Σn ×
Σn × {0, 1}n → Σn by

f(y, z;b)i =

{

zi if bi = 1
yi if bi = 0.

Thus, ifY ∼ pn, Z ∼ qn andB ∼ Ber(δ)n, thenf(Y,Z;B) is distributed according top′n, andγ ′ =
L′(f(Y,Z;B)) is according toµ′n. For eachy ∈ Σn, define the random vector

Γ′(y,Z;B) = β L′(f(y,Z;B)) = βcL(f(y,Z;B)) ∈ R
n

over the random choice ofZ ∼ qn andB ∼ Ber(δ)n, whereβ > 0 is a constant to be specified later.
Denoting by1Cn

: Rn → {0, 1} the indicator function ofCn (i.e. 1Cn
(γ) = 1 iff γ ∈ Cn), we define

w(y) ∈ R
n for y ∈ Σn by

w(y) = EZ,B

[

Γ′(y,Z;B) × 1Cn
(Γ′(y,Z;B))

]

. (1)

For eachy ∈ Σn we havew(y) ∈ Cn sinceCn is a convex cone. Thus, interpreting vector inequalities
coordinate-wise,

µn(Cn + ξ1) ≥ PrY∼pn [(L(Y)−w(Y)) ≥ ξ1] (2)

becausev ≥ w(y), for anyv ∈ Cn and anyy ∈ Σn sinceCn + (R+)n ⊂ Cn. Equation (1) can be written
as

w(y) = E
[

Γ′(y,Z;B)
]

− E
[

Γ′(y,Z;B)|ϕ(y,Z;B)
]

· Φ(y),
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whereϕ(y,Z,B) is the error event “Γ′(y,Z;B) 6∈ Cn” and

Φ(y) := PrZ,B[ϕ(y;Z,B)].

The first term
E
[

Γ′(y,Z;B)i
]

= βc(1− δ)L(yi)− βcδs,

where
s := −EZ∼q [L(Z)]

is a positive scalar becauseq is supported onΣ− andEZ∼q [L(Z)] is strictly negative. The second term

E
[

Γ′(y,Z;B)i|ϕ(y,Z;B)
]

≥ −β‖L′‖∞ = −βc‖L‖∞

since the LLRs are bounded. It follows that

w(y)i ≤ βc
[

(1− δ)L(yi)− δs + ‖L‖∞Φ(y)
]

.

Settingβ = 1
c(1−δ) , we get

w(y)i ≤ L(yi)−
δs− ‖L‖∞Φ(y)

1− δ
.

Therefore, to guarantee that the vector inequalityL(y) − w(y) ≥ ξ1 holds, it is enough to require
the scalar inequalityδs − ‖L‖∞Φ(y) ≥ ξ(1 − δ). Note this reduction of the vector inequality to a scalar
inequality critically depends on the choice ofq so thatL′ = cL. Settingξ = δs

2(1−δ) , we get from (2) that

1− µn(Cn + ξ1) ≤ PrY

[

Φ(Y) > δs
2‖L‖∞

]

.

Using Markov Inequality, and the fact thatEY [Φ(Y)] = 1− µ′n(Cn), we obtain

1− µn(Cn + ξ1) ≤ 2‖L‖∞
δs

(1− µ′n(Cn)).

Sinceµ′n(Cn) = 1 − on(1), we conclude thatµn(Cn + ξ1) = 1 − on(1), whereξ > 0 is constant which
depends onα and the channelch.

Remark 2.3. I) If we replace probability distributions with densities,the LP excess lemma and its proof
hold for continuous MSB channels.

II) We conjecture that the LLR boundedness is not needed for the lemma to hold. One justification of this
conjecture is the Gaussian channel discussed below.

2.1 Gaussian channel

On theσ-Additive White Gaussian Noise (σ-AWGN) channel, we receiveY = (−1)x + σZ, wherex = 0
or 1 is the transmitted bit andZ ∼ N (0, 1), the standard Gaussian distribution. The AWGN has unbounded
LLRs.

By a simple scaling argument, the following version of the LPexcess lemma holds on the AWGN:

Lemma 2.4. LetQn ⊂ F
n
2 be anF2-linear code,Pn ⊂ R

n an LP-relaxation ofQn andσ′ > σ > 0. The
probability of success of thePn-LP decoder on theσ′-AWGN is equal to its probability of success on the
σ-AWGN with LP excessξ, whereξ = σ′−σ

σ′ .
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Proof. The LLR map isL(y) = 2
σ2 y (e.g., [1]). Assume that0 was transmitted and letµ andµ′ be the LLR

densities associated withσ andσ′, respectively. Since

σ

σ′
(1 + σ′z) = 1 + σz − ξ,

we getµ′n(Cn) = µn(Cn + ξ1), for eachCn ⊂ R
n closed under multiplication by positive scalars and in

particular for the fundamental coneCn of thePn-LP decoder.

The distinguishing features of the AWGN from other channelsin this context are: (1) scalingZ corre-
sponds to distorting the channel and (2) the LLR map is linearin y.

3 Application to redundant parity checks

The BSC LP excess lemma was used in [7] to show that the LP decoding threshold of LDPC codes on
the BSC remains the same upon adding all redundant parity checks, assuming that the underlying Tanner
graph hasbounded degreeand possesses two natural properties calledasymptotic strengthandrigidity (see
Corollary 1.7 in [7]). One implication of this result is thatthe BSC threshold is a function of the dual code
and is not tied to the particular Tanner graph realization ofthe code. We use in this section our extension of
the LP excess lemma to extend the result of [7] from the BSC to discrete MSB channels:

Theorem 3.1. Let G = {Gn}n be an infinite family of Tanner graphs, whereGn hasn variable nodes.
LetG = {Gn}n be the resulting family of Tanner graphs obtained by adding all redundant checks, i.e., the
parity check nodes ofGn correspond to all the nonzero elements of the dual code ofGn. Assume thatG
has bounded check degree and thatG is asymptotically strong and rigid. Letch be a discrete MSB channel.
Assume that there existsα > 0 such that for eachα-distortionch′ of ch, theG-LP decoder succeeds onch′

with high probability. Then, theG-LP decoder succeeds onch with high probability.

In order to prove the theorem we only need the following extension of Theorem 1.2 in [7] to discrete
MSB channels:

Lemma 3.2. LetG,G, ch, α, ch′ be as in Theorem 3.1, and Letd be the maximum degree of a check node in

G. For k ≥ d, letG
k
:= {G

k
n}n be the resulting family of Tanner graphs obtained by including all redundant

checks of degree at mostk. There exists a sufficiently large constantk ≥ d –wherek depends onα and the

channel only– such that theG
k
-LP decoder succeeds onch with high probability.

Proof of Theorem 3.1.Following the proof of Corollary 1.7 in [7], Theorem 3.1 follows from Lemma 3.2

and the rigidity ofG which implies that for each constantk ≥ d, the LP decoding polytopeP
(

G
k
n

)

= P (Gn)
for n large enough.

Proof of Lemma 3.2.We use below the terminology of the proof Theorem 1.2 in [7] toexplain the needed
modifications. At a high level, the following changes are needed:

• Instead of a variable received correctly or in error, we havepositive or nonpositive LLRs respectively.

• The value of LP excess isξ instead ofδ4 .

• The maximum absolute value of a received LLR is theconstant‖L‖∞ instead of1.
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More specifically, consider operating theGn-LP decoder onch: assume that the all-zeros codeword was
transmitted and consider the received LLR vectorγ ∼ µn

ch. By the LP excess lemma, there exists a constant
ξ > 0 (dependent onα) such that with high probability, theGn-LP decoder correctsγ with LP excessξ,
i.e., it correctsγ− ξ1. In what follows, consider any suchγ ∈ R

n. To verify Lemma 3.2, we will show that

theG
k
n-LP decoder correctsγ for a sufficiently large constantk ≥ d which depends onξ and the channel

(and does not depend onn). For notational simplicity, we will denoteGn, G
k
n andGn by G,G

k
andG,

respectively. Also, letE,E
k

andE be the set of edges ofG,G
k

andG, respectively.
By Theorem 2.2 in [7], there is a hyperfloww : E → R in G for γ − ξ1. Hence,

F(w) < γ − ξ1,

whereF(w) ∈ R
n is the flow as specified in Definition 2.1 in [7]. Let

V + = {i : γi − ξ > 0}

and
V − = {i : γi − ξ ≤ 0}

be the set of variables nodes with positive and nonpositive “shifted LLR” respectively. SinceG contains
all redundant checks, we can assume by Lemma 4.2 in [7] thatw is primitive, hence the inflow to each
variable inV + is zero and the outflow from each variable inV − is zero. Following [7], define thetrimmed
hyperflowand the resultingriskyandproblematicvariables as follows. Trimw by removing all check nodes

of degree larger thank. The trimming process leads to a distorted dual witnesswk : E
k
→ R in G

k
.

The problematicvariables nodes are those for which the hyperflow variables nodes inequalities ofwk are
violated with respect toγ. A variable node is calledrisky if it receives at leastξ2 flow from the removed
check nodes, thus all the problematic variables are risky. The set of risky variable nodes is calledU . We
haveU ⊂ V − sincew is primitive. Hence

Fi(w
k) ≤ 0 if i ∈ U, and

Fi(w
k) < γi − ξ/2 if i 6∈ U.

Since all the removed checks have degree larger thank and sinceγi ≤ ‖L‖∞ for eachi, the removed checks
give the variables inV − at most

|V +|.(‖L‖∞ − ξ)

k − 1
≤

n‖L‖∞
k − 1

flow. It follows that

|U | ≤
2n‖L‖∞
ξ(k − 1)

.

Sincew is primitive, to fixwk on the problematic variables, it is enough to give each variable inU an‖L‖∞
flow. Following [7], we do that by exploiting the asymptotic strength ofG and the remaining excess on the
nonrisky variable nodes. The remaining LP excess on each nonrisky variable is at leastξ− ξ

2 = ξ
2 . Consider

the asymmetric LLR vectorτ ∈ R
n given by:

τ i =

{

−‖L‖∞ if i ∈ U
ξ
2 otherwise.

We use the remaining excess to fixwk by superposingwk with a dual witness forτ .
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SinceG is asymptotically strong, there exists a constantδ > 0 dependent on ξ
2‖L‖∞

such that if|U | ≤ δn,
the LP decoder ofG succeeds on τ

‖L‖∞
and hence onτ . Thus, if

2‖L‖∞
ξ(k − 1)

≤ δ,

thenτ has a dual witnessv : E → R in G. Sincek ≥ d, let vk : E
k
→ R be the extension ofv to G

k
by

zeros. ThusF(vk) < τ and accordingly

F(wk + vk) < γ.

Therefore,wk + vk is the desired dual witness ofγ in G
k
. It follows (from Theorem 2.2 in [7]) that the

G
k
-LP decoder successfully correctsγ.
In summary, there exists a constantδ > 0 dependent on ξ

2‖L‖∞
such that if

k = max

{

d,

⌈

2‖L‖∞
ξδ

⌉

+ 1

}

,

which depends on theξ and the channel, then theG
k
-LP decoder correctsγ for anyγ ∈ R

n such that the
G-LP decoder correctsγ − ξ1.

Note that the proof of Lemma 3.2 breaks down if the LLRs are unbounded even if Lemma 2.2 holds for
channels with unbounded LLRs (see Remark 2.3.II).
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