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Efficient Algorithms for Systematic Polar Encoding
Harish Vangala, Yi Hong, and Emanuele Viterbo

Abstract—Arıkan has laid the foundations of systematic polar
codes and has also indicated that the computational complexity
order of the systematic polar encoder (SPE) can be the same
of a non-systematic polar encoder (NSPE) i.e., Θ(N logN). In
this paper, we propose three efficient encoders along with their
full pseudocode implementations, all with Θ(N logN) complexity.
These encoders work for any arbitrary choice of frozen bit
indices, and they allow a trade-off between the number of XOR
computations and the number of bits of memory required by
the encoder. We show that our best encoder requires exactly the
same number of XORs as that of NSPE.

Index Terms—Encoder, low complexity, systematic polar codes

I. INTRODUCTION

Systematic polar codes (SPC) were proposed by Arıkan and
are known for their improved bit error rate (BER) performance
compared to the original non-systematic polar codes [1], [2]. In
[1], a systematic polar encoder (SPE) was proposed based on
a successive cancellation decoder (SCD) over a binary erasure
channel (BEC). In [3], another encoder was proposed using a
cascade of two non-systematic polar encoder (NSPE) circuits.
It was recently proved in [4] that such encoder works only
under certain conditions. They also prove that if a given polar
code does not satisfy these conditions they can transform it
into a new polar code that performs at least as well as the
original one. In [5, Section 3], following Arıkan’s recursion,
a systematic encoder is proposed for general `× ` triangular
kernels with a complexity O(N logN) and a memory of O(N)
bits. We note that all the above SPEs have complexity, memory,
and latency higher than an NSPE.

In this paper, we measure the efficiency of an encoder as
the exact number of XOR operations and the exact memory
required in number of bits for the computations (excluding the
input/output). In particular,

1) we present three efficient systematic encoders for SPC,
which work for codes with any choice of frozen bit indices.

2) we demonstrate a trade-off between the number of XOR
operations and the number of bits required among our
three encoders. The least number of XORs required by our
non-recursive SPE is exactly equal to that of an NSPE.

3) we revisit [1] and present explicit and efficient recursive
encoders with exact memory and XOR counts.

An open access simulation platform, including the encoders
in this paper is available in [6].

II. SYSTEM MODEL

Let N , {1, 2, . . . , N}. Boldface lower and upper case
letters represent vectors, and matrices respectively. All the
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vectors in this paper are row-vectors. Given a vector z =
[z1, z2, . . .] and a subset of indices J , zJ denotes the sub-
vector formed by the elements with the indices in J . Similarly,
given a matrix A, AJ denotes the sub-matrix formed by
the rows at the indices J . Let F , [ 1 0

1 1 ] be the standard
kernel used to define polar codes and F⊗n denote the n-fold
Kronecker product of n copies of F.

A. The Non-Systematic Polar Encoder (NSPE)

Binary polar codes are completely specified by a triple
(N,K, I), where N is the code length, K is the length of the
message, and I ⊆ N , |I| = K is the set of indices known
as information bit indices. The remaining N −K indices are
called as frozen bit indices. Here, N is a power of 2 and we
define n , log2(N).

For a (N,K, I) polar code, the generator matrix is G =
(F⊗n)I . Therefore, given a message vector u of K information
bits, a codeword x is generated as:

x = u ·G = d · F⊗n (1)

where d is a vector of N bits including information bits such
that dI = u, dIc = 0, and Ic , N\I. The bits dIc are
called as frozen bits, and are set to zero.

Due to the recursive construction of the matrix F⊗n, we
can perform this matrix-vector multiplication in Θ(N logN)
only. This NSPE is illustrated in Fig. 1, and it requires exactly(
N
2 log2N

)
XORs and 2N bits (i.e. for the extreme nodes).

We will use these values to benchmark our new encoders.
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Fig. 1. The non-systematic polar encoder (NSPE) with an exact complexity
of

(
N
2
log2 N

)
XORs, when (N,K, I) = (8, 5, {2, 4, 6, 7, 8})

B. The Systematic Polar Encoding

A systematic polar code may be described as equivalent
to the original polar code in (1), except that the message
vectors are mapped to codewords, such that the message-bits
are explicitly visible [1]. Consider the indices of K bits in a
codeword x, where the message bits appear explicitly. It was
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shown in [1] that this set can be chosen equal to the set of
information bit indices I. Note that, it slightly differs from
what is usually considered as a systematic linear block code,
where message bits appear as first K bits. This motivates our
interpretation of the SPE below.

The SPE of an information u of K bits, is the solution of:

x = y · F⊗n (2)

where, yI and xIc are the unknowns. Within the systematic
codeword x, xI = u are information bits and xIc are parity
bits. Frozen bits are given by yIc = 0. For example, if
(N,K, I) = (4, 2, {1, 3}) and u = [1 0], then (2) becomes:

[
1, x2, 0, x4

]
=
[
y1, 0, y3, 0

] 
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


where y1, y3 and x2, x4 are the unknowns. Note that there are
exactly N unknowns, shared between x and y. It is easy to see
that (2) is a system of linear equations, up to a re-arrangement.

Since F⊗n is an upper triangular matrix, a straightforward
Gaussian elimination (GE) could be used to solve the equations.
Then the number of XORs required to perform GE would be
approximately equal to the number of ones in the matrix:
3log2N = N log2 3 ≈ N1.585. This is much higher than the
achievable complexity of Θ(N logN) XORs, as indicated
by Arıkan. In fact, devising efficient encoders achieving this
complexity bound forms the core objective of this paper.

III. NEW SYSTEMATIC POLAR ENCODERS

In this section, we propose three novel systematic polar
encoders based on efficient methods of solving (2). Our first
SPE requires the least number of XORs, exactly equal to that of
an NSPE. Later, using the recursion in [1] we show two explicit
SPEs, which recursively split the set of encoder equations in
(2). For each of our encoders, we compute the exact number
of XORs and memory required in bits (see Table I).

The pseudocodes of our three encoders are provided at the
end as routines EncoderA(y,x), EncoderB(i, j,y,x, r), and
EncoderC(i, j,y,x, r). To perform the encoding of message
vector u, we need to initialize the arguments as: i = 1, j = N ,
xI = u, xIc = undef, yI = undef, yIc = 0 and r = 0N×1.
The values of the triple (N,K, I) are implicitly available to
all routines. The solutions are reflected in the values of x and
y (pass-by-reference) after each function call, according to (2).

A. EncoderA: Non-Recursive, with the least XORs

In the circuit implementation of NSPE in Fig. 1, bits evolve
from left to right in n = log2N stages. Our EncoderA
considers exactly the same circuit, except for a different order
of computations and some intermediate memory elements.

We first see that in an SPE based on (2), all the N known bits
and N unknown bits of (2) are distributed on the two extremes
of the circuit shown in Fig. 2. The circuit has N(1 + log2N)
nodes, each storing a bit. Each horizontal connection holds
n+ 1 nodes. Further, on any horizontal connection, only 1 out
of n+ 1 nodes is known at one of the two extremes. Therefore

we start calculations at the known node and move gradually
towards the other extreme, calculating the nodes one by one.
An illustration of such order of computations is shown in Fig. 2.
The key observation that justifies this computation is as follows.
The computation of any of the (n + 1) nodes on any given
horizontal connection involves only the nodes from the same
connection and the nodes below it. Also note that, the order
of evaluation of the horizontal connections must be bottom-up.
This is reminiscent of a backward-substitution.
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Fig. 2. The flow-of-calculations required for SPE on the encoder graph

This procedure requires exactly the same number N
2 log2N

of XOR computations as an NSPE, and N(1 + log2N) bits
(see the pseudocode of EncoderA( ) and Table I).

B. Recursive SPEs based on Arıkan’s recursion[1]

We revisit Arıkan’s recursive idea based on a divide-and-
conquer iteration, which splits the set of equations (2) into
two at each step. This enables us to design efficient encoding
algorithms that trade the number of XORs with memory.

Consider a vector z = [z1, . . . , zN ] of N elements. We
define a level-l partition of z as,

z = [z
(l)

2l , . . . , z
(l)
2 , z

(l)
1 ], 0 ≤ l ≤ n, (3)

where, z(l)
i denotes a sub-vector of z of length 2n−l, which

can be expanded as z
(l)
i = [zai , . . . , zai+2n−l−1], where ai =

(2l − i) · 2n−l + 1, 1 ≤ i ≤ 2l. In other words, z(l)
i is simply

a pointer to the above sub-array of z (as in a programming
language like C). The partition indices are given in reverse
order so that they follow the order of evaluation in our encoders.
Such indices also simplify the traversal of a tree structure that
we use later. Finally, note that z(n)

i = zN−i+1 and z
(0)
1 = z.

Let {rl,i : 0 ≤ l ≤ n, 1 ≤ i ≤ 2l} denote a collection of
2N − 1 different length binary vectors corresponding to the
2N − 1 nodes of a binary tree shown in Fig. 4. Let l be the
level in the tree (or recursion index) and i be the sub-vector
index, for the nodes at the same level in the tree. All the 2l

vectors at a given level l have the same length 2n−l and can be
concatenated as a single length N vector. Although all these
vectors add up to a total of N(1 + log2N) bits, we will later
show how to significantly reduce such memory requirement.

Recursion at level l = 1 — Consider the level-1 partitioning:
x = [x

(1)
2 ,x

(1)
1 ] and y = [y

(1)
2 ,y

(1)
1 ]. Using the block
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decomposition F⊗n, (2) can be rewritten as:

x
(1)
1 = y

(1)
1 F⊗n−1 and (4)

x
(1)
2 = y

(1)
2 F⊗n−1 + x

(1)
1 (5)

Clearly, the set of equations in (4) can be independently
solved (to obtain x

(1)
1 ) and substituted in (5) to save one sub-

matrix multiplication. Note that solving (5) is different from
solving (4) due to the presence of a binary offset vector x(1)

1 .
We initialize these offset vectors as: r1,1 = 0 and r1,2 = x

(1)
1 .

Recursion at levels 2 ≤ l ≤ n — In general, at level (l− 1),
we find 2l−1 equations, relating the level l − 1 partition of
vectors of x and y as below.

x
(l−1)
i = y

(l−1)
i F⊗n−l+1 + rl−1,i 1 ≤ i ≤ 2l−1. (6)

Then, at level 2 ≤ l ≤ n, each of the above equations splits
similarly to (4) and (5) as follows

x
(l)
2i−1 = y

(l)
2i−1F

⊗n−l + rl,2i−1 and (7)

x
(l)
2i = y

(l)
2i F

⊗n−l + rl,2i, (8)

where the new binary offsets {rl,2i−1, rl,2i} at level l are
computed as

rl,2i−1 := (rl−1,i)
(1)
1 (9)

rl,2i := (rl−1,i)
(1)
1 + (rl−1,i)

(1)
2 + x

(l)
2i−1, (10)

where the two halves of rl−1,i are denoted by (rl−1,i)
(1)
1

and (rl−1,i)
(1)
2 , using a similar notation to (3). Note that

(10) can be applied only after solving (7), since the solution
x

(l)
2i−1 is required. We will next see a more convenient

visualization of these recursive computations. Much different
from [5, Section 3], our recursion operates on the binary offset
vectors and does not involve any bit-reversal permutation.

Binary tree representation — Consider a perfect binary tree
with n+ 1 levels l = 0, . . . , n, with root node at level-0. The
2l−1 nodes at a level l − 1 are associated with the 2l−1 set
of 2n−l+1 equations from (6). Each node at level l − 1 splits
into two at level l as shown in Fig. 3. The solution of (2) is
obtained by an in-order traversal of the tree. Each time we

x
(l−1)
i = y

(l−1)
i F⊗n−l+1 + rl−1,i

x
(l)
2i−1 = y

(l)
2i−1F

⊗n−l + rl,2i−1 x
(l)
2i = y

(l)
2i F

⊗n−l + rl,2i

· · · · · ·

1

2 3

Fig. 3. The tree of recursive computations

visit a leaf node (i.e., at l = n), we obtain a simple equation
of the form: x(n)

i = y
(n)
i + rn,i, where either x(n)

i or y(n)
i is

the unknown to solve. Computing rn,i using the successive
updates of (9) and (10), is therefore the critical objective of this
traversal. The binary offsets rl,i are stored in a tree structure
in Fig. 4 as explained before.

As a part of the in-order traversal of the tree in Fig. 3 (or
Fig. 4), we visit each node three times, except for the leaf
nodes which are visited only once.

Let us consider the sequence of visits and respective
operations for a node at level l − 1 in the tree as shown
in Figs. 3 and 4.

1) First Visit ©1 — The required offsets rl,2i−1 are simply
copied using (9). Then a recursive call down the left
branch is made which, upon return, gives the solution (7).

2) Second Visit ©2 — Returning from the left sub-tree we
have full knowledge of x(l)

2i−1, so that rl,2i can be updated
by using (10). Then a recursive call down the right branch
is made which, upon return, gives the solution of (8).

3) Third Visit ©3 — By now we have visited the entire sub-
tree and we have the all solutions of (6). Then we return
to the parent node.
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Fig. 4. Traversal of nodes in recursion, at N = 8

The exact XOR count — Let f(N) denote the number of
XORs required to solve (2). From the recursive equations
(7)–(10) we have:

f(N) = 2 · f(N2 ) + βN2 and f(1) = 1. (11)

The first term on the right hand side accounts for solving
recursively (7) and (8), while the second term βN2 accounts
for the computations required by (9) and (10). In the case
where we have allocated memory for each node of the tree
in Fig. 4 (namely, EncoderB), we have β = 2. A different
implementation (namely, EncoderC), saving on the memory
to store the intermediate values of the rl,i offset vectors will
have β = 4. The closed form solution of (11) yields f(N) =
N + βN

2 log2N .
Note that we ignore all the index computations to address

the subvectors and any operation to identify frozen bits that are
implementation dependent and can be avoided by hardwiring.

EncoderB requires exactly N(1 + log2N) XORs, which
is approximately the same number of XORs required by
the encoder proposed in [3]. However, our EncoderB works
without any restrictions on code rate and frozen bit indices.
Our pseudocode EncoderB( ) implements the storage of offset
vectors as a local variable v allocated upon each recursive call
and released on return. At any point in the tree traversal, we
have a chain of at most n+ 1 recursive function calls being
active (a path from the root node to a leaf node in Fig. 4).
Therefore, the maximum size of allocated memory by these
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function calls is exactly N + N
2 + . . .+ 1 = 2N − 1 bits. Note

that the same memory allocation/deallocation process can be
implemented by simply addressing an array of 2N − 1 bits.

EncoderC provides a memory-efficient implementation by
using a single N -bit vector, since at any level l of Fig. 4, we
need to store N bits of binary offsets rl,i. However, this slightly
increases the number of XORs due to the following reason.
We update the offsets every time we visit a non-leaf node for
the second time. Therefore when we visit it for the third time,
we should restore the original offset to enable computations at
the parent node (see Fig. 4). This requires using twice equation
(10). Hence doubling the number of XORs yields β = 4, and
leads to an overall N(1 + 2 log2N) XOR count, with only N
bits memory (excl. I/O). EncoderC( ) provides its pseudocode.

TABLE I
SUMMARY OF SYSTEMATIC POLAR ENCODERS

Algorithm Recursion # bits (excl. I/O) # XORs

EncoderA No N(1 + log2 N) N
2
log2 N

EncoderB Yes 2N − 1 N(1 + log2 N)

EncoderC Yes N N(1 + 2 log2 N)

NSPE Yes/No 2N
N
2
log2 N

IV. CONCLUSIONS

We have designed three efficient, low complexity algorithms
to perform systematic polar encoding, at the same complexity
order of Θ(N logN). All the three algorithms work for
any arbitrary choice of frozen bit indices (not necessarily
polar). They further illustrate a trade-off between the required
number of XORs and the memory required for an SPE. We
benchmark our encoders with a standard NSPE as detailed
in Table I. Our first encoder is a non-recursive encoder that
requires the least number of XORs, exactly equal to that of an
NSPE. The remaining two encoders are recursive, that require
approximately twice and four times the number of XORs as
an NSPE, respectively. Further improvements to the encoders
such as higher parallelization and lower memory are relegated
to our future work.
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Function EncoderA(y,x)
INPUT : y,x with unfilled bits (variables of (2));
OUTPUT : Updated vectors y and x, with solutions of (2) filled in.

1: n , log2(N) and X is an N × (n+ 1) matrix //Θ(N logN) bits
2: Set: X[:][1] = y and X[:][n+ 1] = x // First & last columns

3: for i = N,N − 1 . . . , 1 do
4: if i ∈ I then s = n+ 1; δ = −1;

5: else s = 1; δ = 1; end
6: Let the binary representation: (i− 1) ≡ b1b2...bn, with b1 as MSB
7: for j = 1, 2, . . . , n do
8: t = s+ jδ; l = min (t, t− δ); κ = 2n−l

9: if bl = 0 then
10: X[i][t] = X[i][t− δ]⊕X[i+ κ][t− δ]
11: else
12: X[i][t] = X[i][t− δ]
13: end
14: end
15: end
16: y = X[:][1] & x = X[:][n+ 1] //Solutions in first & last columns

Function v = EncoderB(i, j,y,x, r)
INPUT : Sub-vectors of y,x formed by bits from index i to j and offset

bits from a vector r of L = j − i+ 1 elements;
OUTPUT : Updated y, x and a returned vector v of same size as r

represents a useful intermediate computation

1: m , b i+j
2 c and L , (j − i+ 1)

2: Initialize: v — an L× 1 vector // 2N − 1 bits memory in total
3: if L = 1 then
4: if i ∈ I then: y[i] = x[i]⊕ r[1] and v[1] = y[i]

5: else: x[i] = y[i]⊕ r[1] and v[1] = y[i]

6: else
7: Denote the half-partitions: v ,

[ v2
v1

]
and r ,

[ r2
r1

]
8: v1 = EncoderB

(
m+ 1, j,y,x, r1

)
// (7) and (9)

9: v2 = r2 ⊕ v1 // (10) L
2 XORs

10: v2 = EncoderB
(
i,m,y,x,v2

)
// (8)

11: v2 = v2 ⊕ v1
L
2 XORs

12: end
13: return v // An intermediate result:

(
x
(l−1)
i + rl−1,i from (6)

)

Function EncoderC(i, j,y,x, r)
INPUT : Sub-vectors of N × 1 size vectors y,x and r formed by the

consecutive L = j − i+ 1 bits from i to j;
OUTPUT : Updated y,x and r

1: if i = j then
2: if i ∈ I then y[i] = x[i]⊕ r[i]

3: else: x[i] = y[i]⊕ r[i]

4: else
5: m , b i+j

2 c

6: EncoderC(m+ 1, j,y,x, r) // (7) & (9)
7: r[i : m] = r[i : m]⊕ r[m+ 1 : j]⊕ x[m+ 1 : j] // (10)

L XORs

8: EncoderC(i,m,y,x, r) // (8)
9: r[i : m] = r[i : m]⊕ r[m+ 1 : j]⊕ x[m+ 1 : j] // restore r

L XORs

10: end


