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Abstract—We study the achievable rate in a MIMO, dual-hop,
relay network where source and relay nodes may precode their
input signals before transmission. Although an iterative expres-
sion for optimal precoders in this scenario is available in the
literature, the corresponding achievable rate cannot be obtained
analytically. We therefore present approximate expressions for
the precoding matrices so as to analytically derive the achievable
rate. Our expressions for the precoders provide performance that
is very close to the optimum while allowing further analytical
investigation of the network system. In particular, we show how
our expressions can be successfully used to analyse the trade-offs
existing between achievable rate and nodes power consumption.

I. INTRODUCTION

Dual-hop multiple-input multiple output (MIMO) relaying
is an efficient cooperative transmission scheme that is able to
improve the throughput and the coverage of wireless commu-
nication systems. Among the existing relay schemes, amplify-
and-forward (AF) is a non-regenerative approach where the
information data is not decoded at the relay but data precod-
ing can be performed. Compared to the decode-and-forward
approach, AF yields a smaller transmission delay and a
better energy efficient performance. In AF relay systems, the
precoding design inevitably hinges on the availability of the
channel state information (CSI). When perfect CSI concerning
the two hops is available at the relay, the optimal precoding
matrix has been obtained in presence of fading channels in [1],
[2]. Additionally, precoding at both the source and the relay
can further improve the network performance if perfect CSI
is available at the source too. In this scenario, an iterative
algorithm has been proposed in [3], in order to jointly obtain
the optimal precoding at the source and the relay. Some recent
studies have also addressed the design of the percoding matrix
in the presence of partial CSI at the relay [4], or in the presence
of a direct link between source and destination [5]. However,
in none of the above cases a closed-form expression of the
network performance under optimal precoding is available.

In this work we tackle this open problem starting from the
fundamental case of a MIMO system with perfect CSI at the
source and the relay, and negligible direct source-destination
link. In this scenario, we narrow the gap between the optimal
precoding design and the analytical tractability of the network
performance, by proposing two suboptimal precoding schemes
whose maximum achievable date rate is extremely close to the
optimum. Then, by assuming that such precoding matrices are
employed, we derive an analytically tractable expression of the
achievable rate. The obtained rate expression is used to inves-
tigate the optimal trade-off existing between the maximum
achievable rate and the power consumption of the network
nodes.

II. SYSTEM MODEL

We consider a MIMO, dual-hop, relay network where the
source, the relay and the destination nodes operate in half-
duplex mode. We assume that all nodes are equipped with m
antennas, although the analysis can be easily extended to any
number of antennas. Also, we assume that no direct link exists
between source and destination.

We consider that data transmission takes place in two
phases, according to the following scheme. In the first phase,
the source precodes the input signal vector x and transmits
it towards the relay. The input vector consists of m entries,
which are assumed to be i.i.d., zero-mean, circular symmetric,
complex Gaussian random variables and such that E[xxH] = I.
The precoding matrix used by the source is denoted by P1.
The signal received at the relay is then given by

r =
√
α1ρ1H1P1x + n1

where n1 is the noise vector at the relay node whose entries
are modeled as complex, i.i.d., zero-mean, Gaussian random
variables with variance σ2

1 , α1 is the path loss, ρ1 is the
source transmit power, and H1 ∈ Cm×m is the channel
matrix between source and relay. Also, the precoding matrix
P1 should be designed in order to meet the normalization
constraint

E
x

[
Tr{P1xxHPH

1 }
]

= Tr{P1P
H
1 } = 1 . (1)

In the second phase, the relay node forwards to the destina-
tion a precoded version of the signal that it has received from
the source. Let H2 ∈ Cm×m be the channel matrix between
relay node and destination. Then the signal received at the
destination can be expressed as

y =
√
α2ρ2H2P2r + n2 (2)

where P2 is an m×m matrix representing relay precoding, n2

is the noise vector at the destination whose entries are modeled
as complex i.i.d., zero-mean Gaussian random variables with
variance σ2

2 , α2 is the path loss, and ρ2 is the relay transmit
power. For any channel matrices H1 and H2, the precoding
matrix P2 should be designed in order to meet the normaliza-
tion constraint:

E
x,n1

[
Tr{P2rr

HPH
2 }
]

= σ2
1Tr

{
P2

(
I +

α1ρ1
σ2
1

T1

)
PH

2

}
= 1 (3)

where T1 = H1P1P
H
1 HH

1 and I is the identity matrix.
In general, the precoders are functions of the channel

matrices. For any choice of the channel matrices and of the
precoders satisfying (1) and (3), the rate corresponding to the
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mutual information I(y,x) is given by:

R(ρ1, ρ2) =
B

2
E

H1,H2

log2

|I +
α2ρ2σ

2
1

σ2
2

H2P2W1P
H
2 HH

2 |

|I +
α2ρ2σ2

1

σ2
2

T2|
,

(4)
where B is the signal bandwidth, T2 = H2P2P

H
2 HH

2 , W1 =
I + α1ρ1

σ2
1

T1 and the factor 1/2 accounts for the fact that the
nodes work in half-duplex.

Let H1 = U1Σ1V
H
1 and H2 = U2Σ2V

H
2 be the singular

value decompositions of the channel matrices and let Λ1 =
Σ1Σ

H
1 and Λ2 = ΣH

2 Σ2. Then, in [3] it has been shown that
the precoders maximizing the above achievable rate are given
by

Popt
1 = σ1V1D1

and

Popt
2 =

σ2
σ1

V2D2

(
I +

α1ρ1
σ2
1

Λ̃1

)−1/2
UH

1 (5)

where D1 is a diagonal matrix such that

D2
1 =

[
φ1I− α1α2ρ1ρ2

σ2
1

σ2
2

Λ−1
]+

,

and D2 is a diagonal matrix such that

D2
2 =

(α2
1ρ

2
1Λ̃

2

1Λ
−2
2

4σ4
1α

2
2ρ

2
2

+
α1ρ1Λ̃1Λ

−1
2

φ2σ2
1α2ρ2

) 1
2

−

(
I+

α1ρ1Λ̃1

2σ2
1

)
Λ−12

α2ρ2

]+

with [x]+ = max(0, x). Also, Λ̃1 is the matrix of eigenvalues
of H1P

opt
1 Popt

1

H
HH

1 , and Λ is the matrix of eigenvalues
of (I +

α2ρ2σ
2
1

σ2
2

H2P
opt
2 Popt

2

H
HH

2 )−1H2P
opt
2 H1H

H
1 Popt

2

H
HH

2 .
We also assume that the elements of Λ, Λ1 and Λ2 are ordered
in decreasing order. Finally, the parameters φ1 and φ2 are such
that σ2

1Tr{D1D
H
1 } = 1 and σ2

2Tr{D2D
H
2 } = 1, respectively.

Given the system parameters and the channel matrices H1

and H2, the optimal precoders Popt
1 and Popt

2 can be found
through an iterative numeric algorithm, as shown in [3].

III. OPTIMAL PRECODERS APPROXIMATION

An analytical expression for the rate (4) yielded by the
optimal precoders P1 = Popt

1 and P2 = Popt
2 is difficult to

obtain due to the non-polynomial functions appearing in their
expression. Hence, we propose two suboptimal expressions for
the precoders at the source and the relay node providing per-
formance close to the optimum and allowing a simple analytic
expression of the achieved rate. Below, we first assume that
precoding is only applied by the relay node, i.e., the source
precoding matrix is constant and scalar (Section III-A). Then
we allow both source and relay node to precode the signals
before transmission (Section III-B).

A. Precoding at relay node only

Here we assume that the source precoder P1 is a scalar and
constant matrix. Then, under the power constraint in (1), P1

can be written as:

P1 =

√
1

m
I .

As for P2, we aim to provide an approximated expression
of the optimal precoder in (5) that depends on the number
of modes, 1 ≤ k ≤ m to which the relay node allocates
power. The number of modes, k, will then be selected so that
maximum rate is achieved. To do so we define

P
(k)
2 =

√
1

kσ2
1

V2Ek

(
I +

α1ρ1
σ2
1

Λ̃1

)−1/2
UH

1

where, similarly to (5), Λ̃1 is the matrix of eigenvalues of
T1 = H1P1P

H
1 HH

1 . In the above expression, the m×m matrix
Ek is given by

Ek =

[
Ik 0
0 0

]
(6)

where Ik is the k × k identity matrix. It is easy to check that
such precoder satisfies (3).

The rate provided by the proposed source and relay pre-
coders can be obtained by substituting the expressions for P1

and P
(k)
2 in (4). We first observe that T1 = H1H

H
1 /m, and

thus Λ̃1 = Λ1/m, and W1 = I + α1ρ1
mσ2

1
H1H

H
1 . It follows that

P
(k)
2 =

√
1
kσ2

1
V2Ek

(
I + α1ρ1

mσ2
1
Λ1

)−1/2
UH

1 and

P
(k)
2 W1P

(k)
2

H
=

1

kσ2
1

V2EkV
H
2 .

Next, for any 1 ≤ k ≤ m, the numerator of (4) is given by∣∣∣∣I+
α2ρ2σ

2
1

σ2
2

H2P
(k)
2 W1P

(k)
2

H
HH

2

∣∣∣∣= ∣∣∣∣I+
α2ρ2
kσ2

2

H2V2EkV
H
2 HH

2

∣∣∣∣
=

∣∣∣∣I +
α2ρ2
kσ2

2

Λ2Ek

∣∣∣∣
=

k∏
i=1

(
1 +

α2ρ2
kσ2

2

λ2,i

)
(7)

where λ2,i is the i-th diagonal element of Λ2. Similarly, the
denominator of (4) is given by∣∣∣∣I +

α2ρ2σ
2
1

σ2
2

T2

∣∣∣∣ =

∣∣∣∣I +
α2ρ2σ

2
1

σ2
2

H2P
(k)
2 P

(k)
2

H
HH

2

∣∣∣∣
=

∣∣∣∣∣I +
ρ2α2

kσ2
2

Λ2Ek

(
I +

ρ1α1

mσ2
1

Λ1

)−1∣∣∣∣∣
=

k∏
i=1

1 + ρ1α1

mσ2
1
λ1,i + ρ2α2

kσ2
2
λ2,i

1 + ρ1α1

mσ2
1
λ1,i

(8)

where λ1,i is the i-th diagonal element of Λ1. Using the above
expressions in (4), we derive the network rate as a function of
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ρ1, ρ2, and k as

R(k)(ρ1, ρ2) =
B

2
E

H1,H2

log2

k∏
i=1

(1+α1ρ1
mσ2

1
λ1,i)(1+α2ρ2

kσ2
2
λ2,i)

1 + α1ρ1
mσ2

1
λ1,i + α2ρ2

kσ2
2
λ2,i

=
B

2
E

Λ1,Λ2

k∑
i=1

log2

(1+α1ρ1
mσ2

1
λ1,i)(1+α2ρ2

kσ2
2
λ2,i)

1 + α1ρ1
mσ2

1
λ1,i + α2ρ2

kσ2
2
λ2,i

=
B

2

k∑
i=1

E
λ1,i,λ2,i

log2

(1+α1ρ1
mσ2

1
λ1,i)(1+α2ρ2

kσ2
2
λ2,i)

1 + α1ρ1
mσ2

1
λ1,i + α2ρ2

kσ2
2
λ2,i

(9)

Note that the averages that appear in (9) are with respect to the
marginal distributions of the i-th ordered eigenvalues of H1

and H2. Then, for any given value of power ρ1 and ρ2, the
maximum rate achieved by these precoders can be obtained
by maximizing with respect to k.

B. Precoding at source and relay node

In the case both source and relay precode their transmit-
ted signals, we propose the following expressions for the
precoders. As shown later, such expressions provide nearly
optimal performance and allow an easy analytic evaluation of
the achievable rate. Specifically, for any integer 1 ≤ k ≤ m,
we approximate the optimal precoding matrix at the source
with

P
(k)
1 =

√
1

k
V1Ek

where Ek is provided in (6). The approximated relay precoder
is given by

P
(k)
2 =

√
1

kσ2
1

V2Ek

(
I +

α1ρ1
kσ2

1

Λ1

)−1/2
UH

1 .

The expression for the achievable rate can be obtained by using
the above expressions for P

(k)
1 and P

(k)
2 in (4). In particular,

we have:

R(k)(ρ1, ρ2) =
B

2

k∑
i=1

E
λ1,i,λ2,i

log2

(1+α1ρ1
kσ2

1
λ1,i)(1+αρ2

kσ2
2
λ2,i)

1 + α1ρ1
kσ2

1
λ1,i + αρ2

kσ2
2
λ2,i

(10)
where the average is with respect to the marginal distributions
of the i-th ordered eigenvalues of H1 and H2. As before, the
rate expression in (10) should be maximized with respect to
k.

IV. PERFORMANCE EVALUATION

The expressions for the rate R(k)(ρ1, ρ2) in (9) and (10) can
be easily computed provided that the marginal distributions of
the i-th ordered eigenvalues of H1 and H2 are known. An
analytic expression for such distributions has been recently
derived in [7, Theorem 10], for the cases where the elements
of the channel matrix are Gaussian i.i.d. with arbitrary mean,
or they are correlated Gaussian with zero mean. These cases
encompass the MIMO Rayleigh and Rician channel models:
we denote the eigenvalue distributions for the Rayleigh chan-
nel by f1,i(x) and for the Rician channel by f2,i(x).

We can then evaluate the rate by computing integrals of the
form

I1 =

∫ +∞

0

log2(1+γx)fu,i(x) dx

I2 =

∫∫ +∞

0

log2(1+γ1x1+γ2x2)fu,i(x1)fv,i(x2) dx1 dx2

where u, v ∈ {1, 2}. Since such integrals cannot be solved in
closed form, their computation is carried out numerically.

Next we exploit the expressions we obtained to optimize
the performance of the relay network, while accounting for
both achievable rate and energy consumption. Specifically, we
first maximize the achievable rate subject to a constraint on
the transmit power at each hop. Then we minimize the total
transmit power while ensuring that the maximum achievable
rate is greater than or equal to a given value.

A. Maximizing the achievable rate

Let ρ̄1 and ρ̄2 denote the maximum transmit power at the
source and at the relay, respectively. Using (9) or (10), we can
solve the following problem

max
k

R(k)(ρ1, ρ2)

s.t. ρ1 ≤ ρ̄1 and ρ2 ≤ ρ̄2 . (11)

In Figure 1 we show the maximum achievable rate as a
function of the maximum transmit power at the source and at
the relay (ρ̄1 = ρ̄2 = ρ̄). The plot compares the performance
obtained by the optimal precoders, our approximations, and
when no precoding is used. The channels of the two hops are
assumed to be Rayleigh distributed. Curves have been obtained
for B = 20 MHz, m = 4, σ2

1 = σ2
2 = −101 dBm, and

α1 = α2 = −90 dB. In the plot, we highlighted the values of
k for which the achievable rate is maximized. Observe that the
approximated precoders in Section III-B perform very close to
the optimal for any value of ρ̄. Furthermore, the approximated
precoder at the relay only provides good performance for
high transmit powers (hence SNR), while it approaches the
performance obtained by no precoding for low SNR. Indeed,
under the latter condition, power should be allocated to the
mode corresponding to the largest eigenvalue (k = 1). Instead,
the source equally distributes power over all antennas. As a
consequence, precoding at the relay becomes ineffective. This
observation is confirmed by the fact that, as ρ̄ increases, the
number of modes to be used (k) increases faster in the case of
precoding at the relay only than for precoding at both source
and relay. Similar results hold for the case of Ricean channels,
as shown in Figure 2.

B. Minimizing the total power budget

We now aim to minimize the sum of the transmit powers
over the two hops, subject to maximum achievable rate con-
straints. The problem can be written as:

min
ρ1,ρ2

ρ1 + ρ2

s.t.max
k

R(k)(ρ1, ρ2) ≥ R̄ (12)
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Fig. 1. Maximum achievable rate vs. transmit power at the source and relay
(ρ̄1 = ρ̄2 = ρ̄) in the case of Rayleigh channels. The values of k for which
the rate is maximized are reported in the legend.
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where R̄ is the target rate.
In Figure 3 we set R̄ = 20 Mb/s and we investigate

the performance as ρ1 + ρ2 varies. Again, we compare the
optimal precoders, our approximations and the no-precoding
case. Thick lines show the function maxk R

(k)(ρ1, ρ2) = R̄
for the different precoding schemes. Thin lines correspond to
constant values of the sum of the transmit powers. The contact
point between thick and thin lines therefore represents the
minimum value of ρ1 + ρ2 that provides the target rate R̄.
We can observe that the approximate precoders at both source
and relay yield a value of total transmit power that is just
0.1 dBm away from the optimum.

V. CONCLUSIONS

We studied a MIMO, dual-hop, relay network where pre-
coding can be performed at both the source and the relay
nodes, or at the relay node only. We also assumed that perfect
CSI is available at the nodes in charging of signal precoding
and that no direct source-destination link exists. Unfortunately,
even in such a simple scenario, only an iterative expression
for the achievable rate is available under optimal precoding.
Thus we first proposed suboptimal precoding matrices whose
performance matches that of optimum precoding very tightly.
We then derived an analytical expression of the rate and
studied the trade-off that exists between achievable rate and
nodes power consumption.
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