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Abstract—This paper aims to solve the energy efficiency (EE)
maximization problem for multicast services in a multiple-
input single-output (MISO) distributed antenna system (DAS).
A novel iterative algorithm is proposed, which consists of solving
two subproblems iteratively: the power allocation problem and
the beam direction updating problem. The former subproblem
can be equivalently transformed into a one-dimension quasi-
concave problem that is solved by the golden search method.
The latter problem can be efficiently solved by the existing
method. Simulation results show that the proposed algorithm
achieves significant EE performance gains over the existing rate
maximization method. In addition, when the backhaul power
consumption is low, the EE performance of the DAS is better
than that of the centralized antenna system (CAS).

Index Terms—Energy efficiency, DAS, multicast services.
I. INTRODUCTION

Recently, distributed antenna system (DAS), large-scale
MIMO (LS-MIMO), cloud radio access networks (CRANs)
and Heterogeneous networks (Hets) have been regarded as
promising techniques to meet the fifth generation (5G) re-
quirements of cellular networks [1]. In this paper, our focus
is on the DAS. While in the LS-MIMO system, all antennas
are deployed in the same geographical location, which causes
correlation among the antennas’ signals [2], in a DAS, remote
access units (RAUs) are located at different places, and each
RAU is connected to the central processing unit (CPU) through
optical fibers. Through distributed implementation, both the
average access distance for the users and the correlations of
the antennas can be significantly reduced. In addition, DAS
usually operates on the per-macrocell basis, which means that
the RAUs in each macrocell serve the users in its own cell
and signals from other macrocells are regarded as interference.
Compared with Hets, where interference management is very
challenging especially for dense Hets [3], in the DAS, the
interference from different RAUs in the same macrocell can
be efficiently handled due to the fact that different RAUs
in each macrocell cooperate with each other for transmis-
sion. Compared with the small-scale interference coordination
offered by the DAS, large-scale interference coordination is
possible in CRANs, where all base stations (BSs) from a large
geographical area are connected to the same computing center
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via fronthaul links, and base-band processing for the multiple
BSs are done jointly at the computing center to cancel inter-
cell interference. Some technical challenges for CRAN include
the large delays on the fronthaul links and the large amount
of overhead and information to enable large-scale interference
cancelation [4].

On the other hand, energy efficiency (EE), measured in
bit/Hz/Joule, has attracted extensive attention [5], and will
become one of the main concerns in 5G networks [1]. Most
of the existing papers focus on the EE design for unicast
services in DAS [6]–[8]. With the increasing demand for video
conferences and online games, multicast services should be
supported by future networks. Unlike the unicast services, in
a multicast system, all users receive the same service data,
and therefore, the data rate is determined by the user with the
worst channel gains. Simulation results in [9] showed that the
DAS can offer a uniform rate distribution over the cell region.
Existing EE design methods proposed for unicast services are
no longer applicable for multicast services, and there is no
study on the EE design for multicast services in DAS.

In this paper, we consider the EE maximization problem for
the MISO multicast DAS. A novel iterative algorithm is pro-
posed to solve the EE maximization problem. In each iteration,
two subproblems are solved: the power allocation problem
and the beam direction updating problem. By constructing a
one-dimension optimization problem that is equivalent to the
first subproblem, we utilize the golden search method to find
the solution. The second subproblem is quadratically quadratic
programming (QCQP). We adopt an existing technique [10] to
solve this subproblem efficiently. We also analyze the conver-
gence and complexity of the iterative algorithm. Simulation
results show that the proposed algorithm outperforms the
existing methods in terms of the EE performance.

II. SYSTEM MODEL

We consider a multicast DAS with N RAUs and K single-
antenna users, where RAU n is equipped with Mn antennas,
n = 1, 2, . . . , N , as shown in Fig.1. All users receive the same
data from all the RAUs. Assume that all RAUs are connected
to the central processing unit (CPU) through the high speed
fiber cable and all RAUs are fully controlled by the CPU. Let
N = {1, · · · , N}, K = {1, · · · ,K} be the sets of RAUs and
users, respectively. The received signal of the kth user is

yk =
∑
n∈N

hHn,kwnx+ zk,∀k ∈ K, (1)

where hn,k ∈ CMn×1 denotes the channel vector from RAU
n to the kth user, x ∈ C is the information symbol for all
users in the DAS system with E{x} = 0 and E{|x|2} = 1,
wn ∈ CMn×1 is the multicast beam-vector at RAU n, zk
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Fig. 1. Structure of one multicast DAS with N RAUs and K users.
is a zero-mean circularly symmetric complex Gaussian noise
with variance σ2

k. The beam-vector wn is further factorized
to wn =

√
pnŵn, where ŵn is the beam direction which is

normalized to unity, and pn is the corresponding power. The
signal-to-interference-plus-noise ratio (SINR) of user k is

SINRk =

∑
n∈N

pn
∣∣ŵH

n hn,k
∣∣2

σ2
k

. (2)

Then, the worst-case user rate (bit/s/Hz) R is [11]

R = log2

(
1 + min

k∈K
SINRk

)
. (3)

To consider the EE design, the total power consumption
should be considered, which can be modeled as [12]

Ptotal =
∑
n∈N

pn + PC +NPbh, (4)

where Pbh represents the backhaul power consumption on
each backhaul link [12], which is used to transmit data and
control information, and PC denotes the total circuit power
consumption, and is defined as PC =

∑
n∈N Mnpc + Np0

where pc denotes the circuit power consumption per antenna
and p0 denotes the static power consumed at each RAU.

The EE of the multicast DAS system is defined as the ratio
of the worst-case user rate to the total power consumption,
measured in bit/Hz/Joule. Our objective is to optimize all the
beam-vectors at the RAUs to maximize the EE of the DAS
system, subject to both the per-RAU power constraints and
the worst-case user rate requirement. The EE maximization
problem can be formulated as

(P1) max
{ŵn,pn,∀n}

R
Ptotal

s.t. pn ≤ Pmax
n ,∀n ∈ N ,

R ≥ Rmin,

where Rmin denotes the minimum rate requirement and Pmax
n

denotes the transmit power constraint for RAU n.
III. ONE NOVEL ALGORITHM TO SOLVE PROBLEM (P1)
In this section, we focus on the solution of the original

problem (P1). Since (P1) is not a convex problem, it’s hard
to find its optimal solution. To solve it, we propose a novel
iterative algorithm with two steps.

In the first step, the power allocation solution on the beam-
vectors is solved with fixed beam directions. By introducing
an auxiliary variable t, Problem (P1) can be reformulated as
(P2) max

{t,pn,∀n}
log2(1+t)∑

n∈N
pn+Pc

s.t. C1 : pn ≤ Pmax
n , ∀n ∈ N ,

C2 :

∑
n∈N

pngn,k

σ2
k

≥ max{2Rmin − 1, t},∀k ∈ K,

where gn,k =
∣∣ŵH

n hn,k
∣∣2,∀n, k. This problem will be solved

in Subsection III-A. Note that the optimal t is no less than
2Rmin − 1.

In the second step, the beam directions are optimized to
minimize the total transmit power with fixed SINR t that
is obtained from the first step. The optimization problem is
formulated as

(P3) min
{wn,∀n}

∑
n∈N
‖wn‖22

s.t.

∑
n∈N
|wH

n hn,k|2

σ2
k

≥ t, ∀k ∈ K,
‖wn‖22 ≤ Pmax

n ,∀n ∈ N .

This problem will be discussed in Subsection III-B. Since
the t obtained from the first step is no less than 2Rmin − 1,
the solution of Problem (P3) satisfies the minimum rate
requirement.

By iteratively solving Problem (P2) and Problem (P3), the
algorithm that solves Problem (P1), named as the EETM
algorithm, is given in Algorithm 1, where EE

{
p
(l)
n , ŵ

(l)
n ,∀n

}
denotes the value of the objective function of Problem (P1)
when pn = p

(l)
n , ŵn = ŵ

(l)
n ,∀n.

Algorithm 1 Energy Efficient Multicast Transmission (EEMT)

1) Initialize l = 1, accuracy δ, beam directions {ŵ(0)
n ,∀n}

and power allocation {p(0)n ,∀n}.
2) Given beam directions {ŵ(l−1)

n ,∀n}, update the power
allocation by solving problem (P2) detailed in Algorithm
2. Denote the solution by {t∗, p∗n,∀n}. Let t(l) = t∗.

3) Solve problem (P3) via the method in [10] where
t = t(l). Denote the solution by w∗n,∀n. Update p(l)n =

‖w∗n‖
2 and ŵ

(l)
n = w∗n/‖w∗n‖,∀n.

4) If
∣∣∣EE{p(l)n , ŵ(l)

n ,∀n
}
− EE

{
p
(l−1)
n , ŵ

(l−1)
n ,∀n

}∣∣∣ ≤
δ, output {p(l)n , ŵ(l)

n ,∀n}. Otherwise, let l = l + 1 and
go to step 2).

A. Algorithm to Solve Problem (P2)
In this subsection, we present an algorithm to solve Problem

(P2) that will be used in step 2) of the EEMT algorithm.
Obviously, Problem (P2) is non-convex, so it is difficult to
solve it directly. In the following, we construct a tractable
optimization problem that is equivalent to Problem (P2).

Define function f(t) as
f (t) = min

{pn,∀n}

∑N
n=1 pn

s.t. C1,C2.
(5)

Note that though the problem in (5) and Problem (P3) look
similar, they are not equivalent. The optimizing variables for
the problem in (5) are real scalars {pn, n ∈ N}, while that for
Problem (P3) are complex vectors {wn,∀n}. The problem in
(5) is a linear programming problem and the globally optimal
solution can be efficiently obtained. The following lemma
shows the convexity of f(t).

Lemma 1: f(t) is a convex function of t.
Proof : Denote power allocation {pn,∀n} as an N -vector

P, i.e., P = [p1, · · · , pN ]T . Let P?1, and P?2 be the optimal
solution to the problem in (5) with t = t1 and t = t2,
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respectively. Let P?3 be the optimal solution to the problem
in (5) with t = t3 , vt1 + (1 − v)t2, for any 0 ≤ v ≤ 1.
Construct a power allocation vector P3 = vP?1 + (1− v)P?2.
P3 is a feasible solution of the problem in (5) for t = t3 due
to the linearity of the constraints C1,C2 in terms of {pn,∀n}
for a given t. Hence, we have

vf(t1) + (1− v)f(t2) = v
N∑
n=1

p∗n,1 + (1− v)
N∑
n=1

p?n,2

=
N∑
n=1

pn,3 ≥
N∑
n=1

p?n,3 = f(t3) = f(vt1 + (1− v)t2),

where the inequality follows since P?3 is the optimal solution
when t = t3. Therefore, f(t) is a convex function of t. �

Then, we construct the following problem

(P4) max
t∈[tmin,tmax]

log2(1+t)
f(t)+PC

,

where tmin = 2Rmin − 1, tmax = min
k∈K

∑
n∈N

gn,kP
max
n

/
σ2
k.

According to Lemma 1, f(t) is a convex function of t.
Moreover, log2(1 + t) is a strictly concave function of t.
Hence, the objective function of (P4) is a strictly quasi-concave
function of t [13]. Then Problem (P4) has a unique globally
optimal solution [13]. The following lemma establishes the
equivalence between Problem (P4) and Problem (P2).

Lemma 2: Denote the globally optimal solution to Problem
(P4) as t∗. Let {p∗n,∀n} be the power profile for achieving
f(t∗). Then, the solution {t∗, p∗n,∀n} is a globally optimal
solution to Problem (P2).

Proof : We prove this by contradiction. Suppose that
{t′, p′n,∀n} is a globally optimal solution to Problem (P2), and
has a higher EE value than {t∗, p∗n,∀n}. Given t′, the power
allocation {p′n,∀n} satisfies the constraints in problem (5).
Hence, f(t′) ≤

∑
n∈N p

′
n holds. Then, we have the following

chain of inequalities

log2(1+t′)
f(t′)+PC

(a)

≥ log2(1+t′)
N∑

n=1
p′n+PC

(b)
> log2(1+t

∗)
N∑

n=1
p∗n+PC

= log2(1+t
∗)

f(t∗)+PC
(6)

where (a) holds due to the fact that f(t′) ≤
∑
n∈N p

′
n, (b)

is due to the hypothesis. Hence, t′ is better than t∗, which
contradicts the fact that t∗ is the globally optimal solution of
Problem (P4). Thus, the lemma follows. �

Since Problem (P4) is strictly quasi-concave, the golden
section search method [14] can be used to find the optimal
t∗. Then, {p∗n,∀n} can be obtained by solving the linear
programming problem (5) with t = t∗. The algorithm to find
the optimal t∗ of Problem (P4) and the corresponding {p∗n,∀n}
is given in Algorithm 2, the solution of which is the optimal
solution to Problem (P2).

Algorithm 2 The golden search algorithm
1) Initialize a = tmin, b = tmax, the desired accuracy ε.
2) Update t1 = a+0.382(b−a) and t2 = a+0.618(b−a).
3) Obtain f (t1) and f (t2) by solving problem (5). If

log2(1+t1)
f(t1)+PC

> log2(1+t2)
f(t2)+PC

, b = t2; else a = t1.
4) If b − a < ε, terminate. Denote the optimal t as t∗ =

(t1 + t2)/2, and solve problem (5) with t = t∗. Denote
the corresponding optimal pn as p∗n(t

∗). Output t∗ and
p∗n(t

∗),∀n. Otherwise, go to step 2).

B. Algorithm to Solve Problem (P3)
Obviously, Problem (P3) is a QCQP problem and the first set

of the constraints are non-convex. As proved in [10], Problem
(P3) is NP-hard. Similar to [10], we use the SDP relaxation
and Gaussian randomization method to solve Problem (P3).
C. Convergence Analysis of the EETM Algorithm

Lemma 3: The sequence generated by the EETM Algorithm
always converges.

Proof : We show that the objective value of Problem (P1)
monotonically increases during the iterative process, i.e.,
EE
{
p
(l)
n , ŵ

(l)
n ,∀n

}
≥ EE

{
p
(l−1)
n , ŵ

(l−1)
n ,∀n

}
. Specifically,

after solving Problem (P2) in step 2) of the l-th iteration,
we obtain the new solution {t∗, p∗n,∀n}. The objective value
at this step, i.e., EE

{
p∗n, ŵ

(l−1)
n ,∀n

}
, will be no less than

EE
{
p
(l−1)
n , ŵ

(l−1)
n ,∀n

}
since {p(l−1)n , t(l−1),∀n} is just the

feasible solution of Problem (P2) in step 2) of the l-th
iteration. After solving Problem (P3) in step 3) of the l-
th iteration, we obtain the solution of beam-vectors, i.e.,
w∗n,∀n. Let p

(l)
n = ‖w∗n‖

2 and ŵ
(l)
n = w∗n/‖w∗n‖,∀n.

Note that {wn =
√
p∗nŵ

(l−1)
n ,∀n} is also feasible for

Problem (P3). According to [10],
∑N
n=1 p

(l)
n is guaranteed

to be no larger than
∑N
n=1 p

∗
n. Moreover, the solution

{p(l)n , ŵ(l)
n ,∀n} achieves the achievable rate no less than

log2(1 + t(l)). Hence, EE
{
p
(l)
n , ŵ

(l)
n ,∀n

}
is no less than

EE
{
p∗n, ŵ

(l−1)
n ,∀n

}
. Hence, we have EE

{
p
(l)
n , ŵ

(l)
n ,∀n

}
≥

EE
{
p
(l−1)
n , ŵ

(l−1)
n ,∀n

}
.

In addition, the objective value of Problem (P1) has an upper
bound, the EETM algorithm converges. �
D. Complexity Analysis of the EETM Algorithm

In each iteration, two subproblems, i.e., Problems (P2) and
(P3), are solved. In the following, we analyze the complexity
to solve these two subproblems, respectively.

In each iteration of Algorithm 2, the rang of (b − a)
will be scaled by 0.618, the above algorithm will stop
after dlog(ε/(tmax − tmin))/log 0.618e iterations, where d·e
denotes the ceiling operator. In each iteration, the computation
complexity of the linear programming problem is O(N3(N +
2K)) [15]. Hence, the total complexity to solve Problem (P2)
is O(dlog(ε/(tmax − tmin))/log 0.618e(N3(N + 2K))).

The complexity of solving Problem (P3) mainly comes from
solving the semidefinite programming problem at a complexity
cost that is at most O((K +N2)3.5) [10].

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
EETM algorithm. We assume that there are six users uniformly
distributed in a circular cell centered at (0, 0) with cell radius
set to be R = 1000 m. Also, the number of RAUs is
assumed to be four, i.e., N = 4. The location of the n-
th RAU is at (r cos(2π(n− 1)/N), r sin(2π(n− 1)/N)) for
n = 1, · · · , N , where r = 2R sin(π/N)/(3π/N) [16]. The
distance from each user to each RAU is assumed to be
at least 20 m. The channel hn,k is modeled as hn,k =√
αn,kSn,kh̃n,k, where αn,k denotes the path-loss that is

modeled as 38.46 + 35log10(d) [17], Sn,k is the log-normal
shadow fading with zero mean and standard deviation 8 dB,
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h̃n,k represents the small scale fading that is assumed to be
zero-mean circularly symmetric complex Gaussian distributed
vector with identity covariance matrix. The noise power is
assumed to be -101 dBm. We assume M , Mn = 4,
Pmax
n = Pmax,∀n, pc = 29 dBm, p0 = 30 dBm.
We first study the convergence behaviour of the EETM algo-

rithm. Fig. 2 illustrates the EE versus the number of iterations
of the EETM algorithm under various power constraints when
Pbh = 0. It is seen from this figure that the EE monotonically
increases and converges rapidly, which confirms the theoretical
result of Lemma 3. Note that only one iteration is sufficient for
the algorithm to converge, which makes our algorithm suitable
for practical applications.

We compare our proposed EETM algorithm (label as ‘DAS
with EE Max’) with the following methods: the worst-case rate
maximization for DAS (labeled as ‘DAS with Rate Max’),
EE maximization for the centralized antenna system (CAS)
where all antennas are placed at the center of the cell (label
as ‘CAS with EE Max’) and the worst-case rate maximization
for CAS (labeled as ‘CAS with Rate Max’). For fairness,
we assume that the maximum transmit power at the CAS is
equal to NPmax, the number of antennas at the CAS is NM .
Moreover, the total circuit power consumption is assumed to
be Npc +NMp0.

Fig. 3 shows the EE under different power constraints
for various methods. It can be seen from this figure that
in the regime of low power constraint, the EE achieved by
the method aiming for the worst-case rate maximization is
almost the same as that achieved by the method aiming
for the EE maximization, meaning that full transmit power
should be used to achieve the maximum worst-case rate and
EE in this regime. However, in the high transmit power
regime, the EE achieved by the EE-oriented method stays
constant, but the EE corresponding to the worst-case rate-
oriented method decreases significantly. This is due to the fact
that the increase of the worst-case rate cannot compensate for
the negative effect of the increase of the transmit power. As
expected, the EE performance of the DAS decreases with the
backhaul power consumption parameter Pbh. If Pbh is low,
ignoring signaling overhead and assuming perfect backhaul,
the EE performance of the DAS is better than that of the
CAS, meaning that to achieve the best EE performance, the
antennas should be placed in a distributed way. However, if
the parameter Pbh is large, the EE performance of the DAS
is inferior to that of the CAS. A more meaningful comparison
between the EE of the DAS and the CAS considering signaling
overhead, backhaul availability, capacity and latency etc. is
part of the future work.

V. CONCLUSION

In this paper, we have studied the EE optimization problem
for multicast services in MISO DAS, where both the per-
RAU power constraints and the worst-case rate requirement
are taken into account. We provide a novel iterative algorithm
to solve the original EE optimization problem, which consists
of solving two subproblems: the power allocation problem
and the beam direction updating problem. Though the power
allocation problem is non-convex, we construct an equivalent
problem consisting of a linear programming problem and
a quasi-concave problem. The convergence of the iterative
algorithm is proved. Simulation results show that our proposed
algorithm converges rapidly. Furthermore, when the backhaul
power consumption is low, the EE performance of the DAS is
better than that of the CAS, indicating that to achieve the best
EE performance, the antennas should be placed in a distributed
way.
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