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Optimal Precoding for a QoS Optimization Problem
in 2-user MISO-NOMA Downlink

Zhiyong Chen, Zhiguo Ding, Peng Xu, Xuchu Dai

Abstract—In this letter, based on the NOMA concept, a quality-
of-service (QoS) optimization problem for 2-user multiple-input-
single-output (MISO) broadcast systems is considered, given
a pair of target interference levels. The minimal power and
the optimal precoding vectors are obtained by considering its
Lagrange dual problem and via Newton’s iterative algorithm,
respectively. Moreover, closed-form expressions of the minimal
transmission power for some special cases are also derived. One
of these cases is termed as quasi-degraded, which is the key point
and will be discussed in detail in this letter. Our analysis further
figures out that the proposed NOMA scheme can approach nearly
the same performance as optimal dirty paper coding (DPC), as
verified by computer simulations.

Index Terms—5G, non-orthogonal multiple access, multiple-
input-single-output, quality-of-service, precoding.

I. INTRODUCTION

SEEKING efficient multiple access technologies in wireless
communication systems has been always an important

topic, since it is key to meet with the demand of exponentially
increasing data traffic [1]. Recently, NOMA has been proposed
for downlink scenarios in 3rd generation partnership project
long-term evolution (3GPP-LTE) systems [2]. Moreover, NO-
MA has also been recognized as a promising candidate for 5G
wireless systems due to its superior spectral efficiency com-
pared to traditional orthogonal multiple access (OMA) [3]–[5].
In consideration of co-channel interference and implementa-
tion complexity, a hybrid multiple access system was proposed
in [4], in which the users are divided into multiple groups.
NOMA is implemented within each group and OMA is carried
out between different groups. Consequently, in this paper, we
will focus on 2-user MISO-NOMA broadcast systems.

It is well known that the capacity region of degraded broad-
cast channels can be achieved by utilizing superposition coding
(SC) in combination with successive interference cancellation
(SIC), i.e, NOMA [6]. Unfortunately, multiple-input-multiple-
output (MIMO) broadcast channels are not generally degraded,
of which the capacity region can only be attained by using
DPC [7], [8]. However, DPC is difficult to implement in
practice due to its nonlinearity and prohibitive complexity.
Thus, NOMA schemes with a linear superposition code for
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non-degraded broadcast channels attracts strong research in-
terests. For example, [9] firstly studied the ergodic capacity
maximization problem for MIMO-NOMA systems with statis-
tical channel state information at the transmitter. In [10], the
downlink sum rate maximization problem for MISO-NOMA
systems was studied. The application of simultaneous wireless
information and power transfer (SWIPT) to NOMA networks
was investigated in [11]. In [12], a minimum power beam-
forming problem was formulated for MISO-NOMA broadcast
systems when the target rates are given. However, the problem
was directly optimized via an iterative algorithm based on a
nonlinear Gauss-Seidel (GS) algorithm and the closed-form
solution was obtained only when the direction of beamforming
vectors were given. Moreover, the global optimality was not
guaranteed.

This letter considers the precoding problem in 2-user MISO-
NOMA downlink scenarios, where there are predefined inter-
ference levels (lower bounds) at the users. The contributions
of this paper are two-fold, as listed in the following:

1): In contrast to the existing works, by categorizing the
users’ channel conditions, closed-form expressions of the
minimal transmission power for quasi-degraded channels are
obtained. The closed-form solutions not only reduce the com-
putational complexity for the design of optimal precoding,
but also yield insightful understandings of MISO-NOMA
downlink transmission.

2): Unlike the existing works in [9], [10] and [12], the gap
between the optimal performance achieved by DPC and the
one achieved by the proposed precoding scheme is clearly
identified. In particular, we focus on a heterogenous case,
and consider that users’ channel conditions are distinctive, an
assumption valid for many practical communication scenarios.
The developed analytical results demonstrate that the obtained
solution for the formulated problem achieves exactly the same
performance as DPC, i.e., the performance gap between the
proposed scheme and DPC is zero for such heterogenous
scenarios. It is also worthy pointing out that the complexity
of the proposed scheme is much smaller than DPC, due to the
use of superposition coding and SIC.

II. PROBLEM FORMULATION

Consider a 2-user MISO broadcast system with flat fading
channels, in which the base station (BS) is equipped with N
transmit antennas and each receiver is equipped with single
antenna. The system model can be characterized as

yi = hH
i x+ ni, i = 1, 2, (1)

where hi ∼ CN (0, σ2
i IN ) is the channel coefficient, hH

i

denotes the Hermitian transpose of hi, and ni ∼ CN (0, 1)
is the additive Gaussian noise of user i. The BS is intended to
convey si to user i at each time sample. In downlink NOMA,
s1 and s2 are superposed as x = w1s1 + w2s2, where the
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power of si is normalized, i.e., E{∥si∥2} = 1, and wi is
the precoding vector. Given a decoding order (s2, s1)1, by
performing SIC at the receiver side, the individual achievable
rate of each user can be expressed as [3]{

R1 = ln(1 + hH
1 w1w

H
1 h1),

R2 = min {ln (1 + SINR2,1) , ln (1 + SINR2,2)} ,
(2)

where

SINR2,1 =
hH
1 w2w

H
2 h1

1 + hH
1 w1wH

1 h1
,SINR2,2 =

hH
2 w2w

H
2 h2

1 + hH
2 w1wH

1 h2
.

We, herein, consider a quality-of-service (QoS) optimization
problem given a pair of target interference levels r1, r2. Since
the power of si is normalized, the total power consumption
to support reliable transmission is ∥w1∥2 + ∥w2∥2. Conse-
quently, the optimal precoding problem to minimize the total
transmission power can be formulated as

min ∥w1∥2 + ∥w2∥2

s.t. R1 ≥ ln(1 + r1), R2 ≥ ln(1 + r2).
(3)

For clarity purpose, we consider the equivalent optimization
problem in (3), which can be formulated as

p∗ = min ∥w1∥2 + ∥w2∥2

s.t. hH
1 w1w

H
1 h1 ≥ r1

hH
1 w2w

H
2 h1 ≥ r2 + r2h

H
1 w1w

H
1 h1

hH
2 w2w

H
2 h2 ≥ r2 + r2h

H
2 w1w

H
1 h2,

(4)

where p∗ denotes the minimal required power to support the
target QoS transmission.

III. PROPOSED ITERATIVE ALGORITHM

The Lagrangian function for (4) is [13]

L(w1,w2, λ1, λ2, λ3) =

r1λ1 + r2λ2 + r2λ3 +wH
1 A1w1 +wH

2 A2w2,
(5)

where λi (i = 1, 2, 3) are Lagrange multipliers, and{
A1 = IN − λ1h1h

H
1 + λ2r2h1h

H
1 + λ3r2h2h

H
2 ,

A2 = IN − λ2h1h
H
1 − λ3h2h

H
2 .

. (6)

Therefore, the dual problem of (4) can be written as

d∗ = max r1λ1 + r2λ2 + r2λ3

s.t. A1 ≽ 0, A2 ≽ 0, λi ≥ 0, i = 1, 2, 3,
(7)

and the Karush-Kuhn-Tucker (KKT) system is
A1w1 = 0,A2w2 = 0

Primary & dual Constraints
Complementary slackness

. (8)

Proposition 1. Given the optimal solution λ∗
1, λ

∗
2, λ

∗
3 of the

dual optimization problem in (7), if w∗
1,w

∗
2 satisfy the KKT

conditions in (8), then strong duality holds, i.e., p∗ = d∗.

Proof: We first show that the optimization problem in
(4) can be reformulated as a convex problem. The objective
function and the first constraint are clearly convex functions

1The optimal decoding order can be found by comparing the required power
by the cases with different order.

of the precoding vectors. To reveal the hidden convexity of the
last two constraints, we follow the same steps developed in
[14]. Note that the quadratic forms in the last two constraints
make wi and ejθiwi equivalent for any phase rotation θi, i =
1, 2. By using this phase ambiguity, the constraints can be
reformulated as second-order cone constraints. It is easy to
show that Slater’s constraint qualification is satisfied. Hence
strong duality holds and w∗

1,w
∗
2 are indeed global optimal.

The dual optimization problem in (7) is in a formulation
of semi-definite programming (SDP), thus can be solved
efficiently by interior point methods. Once the optimal solution
of (7) is obtained, the KKT system in (8) can be solved
efficiently via Newton’s iterative method. By taking advantage
of the strong duality, the resultant precoding vectors are global
optimal.

IV. CLOSED-FORM SOLUTIONS

A. Dual Constraints Reduction
In order to derive the closed-form solution of the optimiza-

tion problem in (7), we first introduce a lemma and a corollary
to reduce the semi-definite constraints.
Lemma 1. Assume h and g are two complex-valued vectors
in CN . By defining cos2 θ = hHggHh

∥h∥2∥g∥2 , then hhH + ggH has
at most 2 non-zero eigenvalues:
1

2

(
∥h∥2 + ∥g∥2 ±

√
(∥h∥2 + ∥g∥2)2 − 4∥h∥2∥g∥2 sin2 θ

)
.

Proof: It is obvious that hhH + ggH has at most 2 non-
zero eigenvalues ϕ1, ϕ2. We have

ϕ1 + ϕ2 = tr(hhH + ggH) = ∥h∥2 + ∥g∥2 (9)

and

ϕ2
1 + ϕ2

2 = tr((hhH + ggH)2) = ∥h∥4 + ∥g∥4 + 2hHggHh.

Therefore, we have

ϕ1ϕ2 =
1

2
((ϕ1+ϕ2)

2− (ϕ2
1+ϕ2

2)) = ∥h∥2∥g∥2 sin2 θ. (10)

By combining (9) and (10), the lemma is proved. This lemma
can also be found in [15].

By applying the methodology in the proof of Lemma 1, we
have the following corollary for obtaining the eigenvalues of
hhH − ggH .

Corollary 1. Assume h and g are two complex-valued vectors
in CN . Then hhH −ggH has at most 2 non-zero eigenvalues:
1

2

(
∥h∥2 + ∥g∥2 ±

√
(∥h∥2 + ∥g∥2)2 − 4∥h∥2∥g∥2(1 + cos2 θ)

)
.

By employing Lemma 1 and Corollary 1, the dual con-
straints can be reduced as

∥k1∥2 + ∥k2∥2 ≤ min(1 + ∥k1∥2∥k2∥2(1 + cos2 θ), 2)

∥l1∥2 + ∥l2∥2 ≤ min(1 + ∥l1∥2∥l2∥2 sin2 θ, 2)
λi ≥ 0 i = 1, 2, 3

,

(11)
where 

k1 =
√

λ1 − λ2r2h, k2 =
√
λ3r2h2

l1 =
√
λ2h1 l2 =

√
λ3h2

cos2 θ =
hH
1 h2h

H
2 h1

∥h1∥2∥h2∥2

. (12)
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B. Optimal Closed-form Solutions

In this subsection, by applying the reduced semi-definite
constraints, the global optimal closed-form solution of (7) will
be derived for some special cases. Among these special cases,
the definition of quasi-degraded channels will be introduced,
and its physical importance as well as its properties will be
discussed in detail.

The closed-form solutions of the dual QoS optimization
problem in (7) in general is difficult to obtain. However, it will
be shown that the optimal closed-form solution can be attained,
by studying this optimization problem in (7) with 3 different
solution subsets2, i.e., λ2 = 0, λ3 = 0, and λi ̸= 0, i = 1, 2, 3.
Proposition 2 and Proposition 3 provide the optimal closed-
form solutions for the subsets 1 and 2, respectively.
Proposition 2. If λ2 = 0, then the optimal solution is

λ1 = ∥h1∥−2 1 + r2

1 + r2 sin
2 θ

, λ3 = ∥h2∥−2. (13)

The optimal value of the objective function is

d∗ =
r2

∥h2∥2
+

r1
∥h1∥2

1 + r2

1 + r2 sin
2 θ

. (14)

Proof: By using Lemma 1 and Corollary 1, the dual
constraints can be reduced as

λ3 ≤ ∥h2∥−2, λi ≥ 0, i = 1, 3.

λ1 ≤ 1

∥h1∥2
1 + λ3r2∥h2∥2

1 + λ3r2∥h2∥2 sin2 θ
.

Note that 1
∥h1∥2

1+λ3r2∥h2∥2

1+λ3r2∥h2∥2 sin2 θ
is monotonically increasing

with λ3 since that ∥h2∥2 ≥ h2∥2 sin2 θ always holds. There-
fore, λ1, λ3 can be simultaneously maximized and the proof
is completed.

The case with λ2 = 0 has an important meaning in practice,
as explained in the following. To better illustrate the case
of λ2 = 0, we define a term, quasi-degraded channels, as
introduced in the following:
Definition 1. Given the channel coefficients h1,h2 and the
target interference levels r1, r2, the broadcast channels h1 and
h2 with respect to r1 and r2 are quasi-degraded if the optimal
solution of the dual QoS optimization problem in (7) satisfies
λ2 = 0.

By using this definition, we can have four remarks for
Proposition 2 as follows:

Remark 1: the closed-form QoS solution of quasi-degraded
broadcast channels can be obtained, as illustrated in Proposi-
tion 2.

Remark 2: for a heterogeneous3 broadcast system, the case
with quasi-degraded channels appears with a considerably high
probability, as verified by the computer simulations shown
in Table I. Particularly, Table I illustrates the probability to
have quasi-degraded channels versus σ1. In this simulation,
the target interference levels are set as (r1, r2) = (1, 1), and
the variance of the channel coefficient of user 2 is fixed to be

2Note that λ1 ̸= 0, and other cases are not needed.
3We say a broadcast system to be heterogeneous if the channel coefficients

of different users are not identically distributed, i.e., their variances are
different, σ2

1 ̸= σ2
2 .

TABLE I: Quasi-degraded probability versus σ1

N

Pr σ1
3 4 5 6 7 8

2 0.6900 0.7979 0.8587 0.9006 0.9283 0.9451
4 0.4513 0.6264 0.7389 0.8034 0.8488 0.8891
6 0.3012 0.4913 0.634 0.7168 0.7901 0.8329

unity, i.e., σ2
2 = 1. One can observe that the more disperse

the broadcast system is, the larger probability the case with
quasi-degraded channels appears.

Remark 3: if the broadcast channels are quasi-degraded, the
proposed optimization algorithm in combination with super-
position coding and SIC can achieve the same performance
as DPC, as explained in the following. Since λ2 = 0, the
optimization problem in (4) is equivalent to

min ∥w1∥2 + ∥w2∥2

s.t. hH
1 w1w

H
1 h1 ≥ r1

hH
2 w2w

H
2 h2 ≥ r2 + r2h

H
2 w1w

H
1 h2,

(15)

which is exactly the same as the power minimization problem
for DPC in MISO systems. Note that the minimal required
power of quasi-degraded channels is the same as that of DPC,
and the quasi-degraded channels appear with a considerably
high probability in a heterogeneous broadcast system. There-
fore, the overall performance achieved by the proposed scheme
is only slightly outperformed by the optimal DPC. Insightfully,
although MISO broadcast channels are not degraded, it is
also possible to achieve the optimal performance only using
NOMA instead of DPC, provided that the broadcast channels
are quasi-degraded.

Remark 4: On one hand, when the channels are quasi-
degraded, the closed-form solution (λ1, λ2, λ3) of the dual
problem in (7) can be obtained according to Proposition 2.
By applying the closed-form solution, A1,A2 are obtained.
By considering the KKT system in (8), firstly, one can
observe that w1 and w2 are in the null space of A1 and
A2, respectively. Then, by considering the complementary
slackness, the optimal precoding vectors can be obtained
efficiently by Newton’s iterative method, which significantly
reduces the computational complexity of the conventional
interior method. On the other hand, when the channels are
not quasi-degraded, since we have no closed-form solution,
the conventional interior method is adopted. In conclusion,
with regard to a heterogeneous broadcast system, the overall
computational complexity is also significantly reduced since
the quasi-degraded channels appear with a considerably high
probability.
Proposition 3. If λ3 = 0, then the optimal solution is

λ1 = ∥h1∥−2(1 + r2), λ2 = ∥h1∥−2. (16)

The optimal value of the objective function is

d∗ = ∥h1∥−2(r1 + r2 + r1r2). (17)

Proof: By using Lemma 1 and Corollary 1, the dual
constraints can be reduced as

(λ1 − λ2r2)∥h1∥2 ≤ 1, λ2∥h1∥2 ≤ 1, λi ≥ 0, i = 1, 2.
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Obviously, it can be transformed as

λ1 ≤ ∥h1∥−2(1 + r2), λ2 ≤ ∥h1∥−2, λi ≥ 0, i = 1, 2.

Therefore, the optimal value of the objective function is d∗ =
∥h1∥−2(r1 + r2 + r1r2), and the proof is completed.

Remark 5: It is important to point out that this case often
implies that a wrong decoding order is used. Or in other words,
if λ3 = 0, then, it is more likely that we can obtain a smaller
required power by changing the decoding order.

V. SIMULATION RESULTS
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Fig. 1: Power consumption for MISO broadcast systems

To measure the performance of the optimal NOMA precod-
ing algorithm in terms of power efficiency, the total power con-
sumption of different precoding algorithms for MISO broad-
cast systems versus N is plotted in Fig. 1(a) and Fig. 1(b). It
is observed that the optimal NOMA strategy has a significant
improvement in terms of power consumption in comparison
with the traditional OMA scheme (TDMA/FDMA). It is also
noted that the optimal NOMA strategy only has a slight
performance loss compared to the optimal DPC. In comparison
with the zero-forcing algorithm4, the proposed NOMA strategy
yields a significant performance gain when N is small, and
the two have similar performance when N is large. It is also
worthy pointing out their difference compared to DPC or
ZFBF for large N gets more negligible when σ2

1

σ2
2

becomes
larger.

2 3 4 5 6 7 8 9 10
N

10-5

10-4

10-3

10-2

10-1

100

Ou
ta
ge
 P
ro
ba
bi
lit
y

DPC
NOMA
NOMA-UE1
NOMA-UE2
ZF
OMA
ZF-UE1
ZF-UE2

(a) Robustness

2 3 4 5 6 7 8 9 10
N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ou
ta

ge
 R

at
e

DPC
NOMA
NOMA-UE1
NOMA-UE2
ZF
OMA
ZF-UE1
ZF-UE2

(b) Outage rate

Fig. 2: Performance comparison for MISO broadcast systems
To measure the robustness and outage rate performance of

the proposed optimal NOMA algorithm, the outage probability
with the fixed total power and outage rate versus N is plotted
in Fig. 2(a) and Fig. 2(b), respectively. Consider a 2-user
MISO broadcast system, where the BS is located at the center,
user 1 and user 2 are uniformly distributed in a circle and

4In ZFBF, the optimal power allocation is adopted.

a ring, respectively. Denote the distance between the BS
and user i by di (i = 1, 2). The channel coefficients are
modelled as σ2

i = 5
1+d3

i
, where d1 ≤ 1 and 2 ≤ d2 ≤ 3.

Given the maximum transmit power Pmax and a pair of target
interference levels r1, r2, the outage probability is

pout(Pmax, r1, r2) := P(min ∥w1∥2 + ∥w2∥2 > Pmax). (18)

Especially, in Fig. 2(b), the maximum transmit power is set
to be 1, i.e., Pmax = 1, and the target interference levels are
set as (r1, r2) = (2, 1). It is observed from these figures that
the proposed NOMA strategy achieves a performance similar
to DPC, and outperforms all the other precoding algorithms,
such as zero-forcing beamforming and traditional OMA.

VI. CONCLUSION

In this paper, a quality-of-service (QoS) optimization prob-
lem for 2-user MISO-NOMA systems was investigated. Given
a pair of target interference levels, the minimum required pow-
er and the optimal precoding vectors have been generally ob-
tained by solving the dual QoS optimization problem and via
Newton’s iterative algorithm. Additionally, the quasi-degraded
definition was introduced, as well as its physical meaning and
excellent properties. Finally, simulation results were provided
to show that the proposed precoding algorithm can outperform
many existing schemes, and yield a performance close to DPC.
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