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A Low Complexity Encoding Algorithm for
Systematic Polar Codes

Guo Tai Chen, Zhaoyang Zhang, Caijun Zhong, and Liang Zhang

Abstract—Arıkan has shown that systematic polar codes (SPC)
outperform nonsystematic polar codes (NSPC). However, the
performance gain comes at the price of elevated encoding com-
plexity, i.e., compared to NSPC, the available encoding methods
for SPC require higher memory and computation. In this letter,
we propose an efficient encoding algorithm requiring onlyN bits
of memory and having N

2
log

2
N XOR operations. Moreover, the

auxiliary variables in the algorithm can share the memory to
reduce extra memory requirement. Furthermore, a parallel 2-bit
encoding algorithm is also presented to improve the encoding
throughput. Remarkably, we show that parallel encoding can
be implemented with the same number of XOR operations and
memory bits. Finally, the proposed encoding algorithm can be
directly used for NSPC with the same complexity.

Index Terms—Polar codes, systematic polar codes, encoding
algorithm, parallel encoding.

I. I NTRODUCTION

Polar codes, originally proposed by Arıkan in [1], have
gained enormous interests due to a number of distinctive fea-
tures. For instance, polar codes have explicit coding structure
and can achieve the capacity of symmetric binary memoryless
channels (S-BMC). Moreover, polar codes with finite length
yield competitive performance when compared to LDPC [2]
and Turbo codes [3] in addition to having low encoding and
decoding complexity.

The standard polar codes are in nonsystematic form where
both frozen bits and information bits (also referred to as
user bits) are placed on the polarized bit-channels of the
polarization structure and the user bits do not appear in the
polar codeword. However, information bits as part of the
codeword are required in some scenarios, such as the famous
Turbo codes [4] whose component codes are systematic codes
that can exchange information between modules in turbo
decoding. To construct systematic polar codes (SPC), Arıkan
proposed the idea of shifting the user bits from polarized
bit-channels to unpolarized bit-channels [5], which makes
the frozen and user bits lie on two different extremes of
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TABLE I
SUMMARY OF SYSTEMATIC POLAR ENCODERS

Algorithm Recursion # bits(excl. I/O) # XORs
EncoderA [9] No N(1 + log

2
N) N

2
log

2
N

EncoderB [9] Yes 2N − 1 N(1 + log
2
N)

EncoderC [9] Yes N N(1 + 2 log
2
N)

NSPC [9] Yes/No 2N N

2
log

2
N

Proposed SPC No N N

2
log

2
N

polarization structure. Arıkan showed that systematic polar
codes outperform nonsystematic polar codes (NSPC) in terms
of bit error ratio (BER) and the performance have also been
investigated in [6].

Recently, SPC as component codes of concatenated codes
have been investigated in [7] and [8]. Compared to the NSPC
with the same polarization structure, SPC is inherently more
complex. Hence, to facilitate the application of SPC, the
key challenge is to find an efficient encoding method. In
[5], Arıkan presented a recursive method for SPC encoding
with αN2 log2N (α > 1) XOR operations, where Arıkan
also suggested using successive cancellation (SC) decoder
as an encoder for SPC. Following this suggestion, an SPC
encoder which facilitates easy parallelization was proposed
in [10], [11], with the limitation of executing SC algorithm
twice and constrained frozen bits. Another SPC encoding
algorithm in the recursive implementation with elimination
method was presented in [12]. Most recently, the authors of [9]
proposed three encoding algorithms for SPC with memories
of N(1+ log2N), 2N −1 andN bits and XOR operations of
N
2 log2N , N(1 + log2N) andN(1 + 2 log2N), respectively.
However, the major drawback of the above discussed encoding
methods is the high requirements on memory or computation,
which may not be suitable for devices with small size and
limited power. Motivated by this, in this letter, we propose
a new efficient encoding algorithm for SPC requiring only
N bits of memory (excluding the input/output) andN2 log2N
XOR operations. To the best of the authors’ knowledge, the
proposed algorithm requires the minimum memory as well as
XOR operations compared to the known encoding methods,
as illustrated in Table I. In addition, to further improve the
encoding throughput, a parallel 2-bit encoding algorithm is
also discussed, which shows that the parallel encoding can
be accomplished without incurring additional cost in termsof
XOR operation and memory bit.

II. N ONSYSTEMATIC AND SYSTEMATIC POLAR CODES

For polar codes with codeword lengthN(= 2n, n ≥ 1) and

kernel matrixF =

(

1 0
1 1

)

, the polarization transformation
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matrix G can be written asG = F⊗n where⊗ denotes the
Kronecker power operation. Letu = (u0, u1, · · · , uN−1) and
x = (x0, x1, · · · , xN−1) be the bit vectors on the left and right
side of the encoder shown in Fig.1, respectively, then we have

x = uG. (1)

For NSPC,u is the only input of the encoder, i.e.,u includes
both the frozen and user bits, and the encoding is performed
from left to right according to the coding structure shown in
Fig.1, whereA denotes the index set of the user bits.

However, for SPC, bothu andx are inputs of the encoder.
To construct systematic polar codes, Arıkan proposed to place
the user bits on the right side of the encoder and keep the same
indices for the bits as illustrated in Fig.1 withN = 23 and
A = {1, 3, 5, 6, 7}, where the left extreme node with hollow
arrow denotes the frozen bit while the right extreme node with
solid arrow denotes the user bit.

The index set for the frozen bits is the complementary set
of A, i.e.,Ac = {0, 1, · · · , N − 1}−A. Now, denoteuA and
uAc as the bit vector with elementsui, i ∈ A and i ∈ Ac,
respectively, and the similar denotation is also forxA andxAc ,
then, Equation (1) can be rewritten as

(xA xAc) = (uA uAc)

(

GAA GAAc

GAcA GAcAc

)

, (2)

whereGAAc is a sub-matrix ofG with elementsGi,j , i ∈ A
and j ∈ Ac, andGAA, GAcA andGAcAc are defined in the
same fashion. The objective of SPC encoding is to obtainxAc

given the inputsuAc andxA.
Since matrixGAA is invertible,xAc can be computed by

[5]:

xAc = (xA + uAcGAcA)G
−1
AA

GAAc + uAcGAcAc . (3)

As discussed in the Introduction section, the known methods
in literature to computexAc requires relatively large memory
and heavy computation. Motivated by this, the main objective
of this letter is to find an efficient algorithm to computexAc .
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Fig. 1. SPC encoding diagram withN = 23 andA = {1, 3, 5, 6, 7}.

III. E FFICIENT ENCODING ALGORITHM FORSPC

The proposed encoding algorithm is similar to the algorithm
EncoderA in [9] where the encoding is implemented from the
bottom horizontal connection to the top horizontal connection
and the calculation for each horizontal connection starts from
known node (i.e., one of elements ofxA or uAc ) and moves

from one node to the next and to the other side of the
polarization structure, as shown in Fig.1. Due to the fact that
each node is allocated with one bit memory inEncoderA,
the total memory requirement ofEncoderA is N(1+ log2N)
bits. The key feature of the proposed encoding algorithm is
to reduce the memory requirement fromN(1 + log2N) bits
to N bits while maintaining the same computation load, i.e.,
N
2 log2N XOR operations.

A. Encoding algorithm

To exploit the recursive nature of polar codes, the polariza-
tion structure withN = 2n is divided inton layers labeled
by 0, 1, · · · , (n− 1) from right to left as shown in Fig.1. And
for layer λ (λ = 0, 1, · · · , n− 1), theN nodes (includes the
corresponding operations) are separated into2(n−1)−λ blocks
from top to bottom and each block contains2λ+1 elements.
As an illustration, the dashed box in the right-bottom corner
of Fig.1 represents one of the first-layer blocks.

To analyze the memory requirement of the encoding algo-
rithm, let us first consider the blocks in the same layer. The key
observation is that the blocks in same layer are independent
and there is no information exchange between the blocks in
the same layer, which indicates that the memory used for one
block can be recycled for the other blocks in the same layer
when the encoding proceeds from the bottom up. In addition,
a close inspection reveals that, in each block, only the lower
half of the elements need to be stored in memory for the
encoding process, and the outcomes of the XOR operations in
the upper half can be stored in the associated lower half. Then,
it is easy to show that only2λ bits of memory are required
for the encoding process in layerλ. Hence, the total required
memory of all layers is2n − 1 = N − 1 bits.

To corroborate the above argument, let us consider the
following illustrative example. For notational convenience, we
defineDaλ,λ as the memory address used for layerλ, where
aλ (aλ = 0, 1, · · · , 2λ − 1) is the index of bit memory. We
focus on the bottom block in layer0 highlighted by the dashed
box in Fig. 1. In this block,x6 andx7 are the known bits and
x7 will be first processed. The first step is to copyx7 to D0,0,
and then toD1,1 andD3,2. Since the stored value inD0,0 is
the same asx7, the XOR operation betweenx6 and x7 can
be replaced withx6 andD0,0 and the outcome of the XOR
operation can be stored inD0,0, since the previous value in
D0,0 is obsolete. The next step is to copy the value ofD0,0 to
D0,1. Once done,D0,0 is released since its value is no longer
required in the remaining process, hence can be recycled for
use in the next block in layer 0. As such, only1 = (20)
bit memory is required for the encoding process in layer 0.
Finally, the above process is extended to other layers.

In the encoding process of SPC, there exist two different
operations, namely, directly copying and XOR operation.
Hence, it is of significant interest to obtain a fast method to
determine the proper operation. Here, we present a simple
method to address this issue. Letφ (φ = 0, 1, · · · , N − 1)
denote the index of current horizontal connection for top to
bottom and denote the binary expression ofφ as bn−1 · · · b0.
Then, directly copying is performed in layerλ when bλ = 1
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and XOR operation occurs whenbλ = 0, as illustrated in Fig.
1.

For the propagation from left to right, the case forbλ = 0
is more complex. Let us take the information propagation
of u0 for example. Since bothu0 andD0,2 are needed for
the XOR operationu0

⊕

D0,2 at the same time, we can not
copy u0 to D0,2. To circumvent this problem, we introduce
a temporary variablet, and sett = u0. Hence, the XOR
operationx0

⊕

D0,2 can be replaced witht
⊕

D0,2, and the
corresponding outcome can be assigned tot as well, i.e.,
t = t

⊕

D0,2. When bλ = 1, the directly copying operation
is to copyt into Daλ,λ, which implies thatt andDaλ,λ share
the same value after the directly copying, hencet can then
be used for the following operations instead ofDaλ,λ. Due
to the introduction of a temporary variable, the total required
memory bits for the proposed encoding process isN . It is also
worth emphasizing that the number of XOR operations in the
proposed encoding process is onlyN2 log2N .

The pseudocodes of the proposed encoding of SPC is listed
in Algorithm 1 where← is the assignment operator. Lines 6-
15 are for the propagation from right to left, and lines 17-27
are for the propagation from left to right. After each process
of propagation,aλ will be updated from the next propagation,
which is shown in lines 28-31.

Comparing the pseudocodes betweenEncoderA in [9] and
Algorithm 1 , it can be found that the encoding processes
of both algorithms work in the same serial fashion and are
implemented from horizontal connection(N − 1) to hori-
zontal connection 0 one by one, which indicates that both
algorithms have the same number of XOR operations and
directly copying. However, our proposed algorithm repeat-
edly utilizes theN -bit memory while EncoderA requires
N(1+ log2N) bits of memory. Moreover, the XOR operation
in the proposed algorithm only requires two operands and is
performed in place while the XOR operation inEncoderA
has three operands including one destination and two sources,
which may incur extra computation. And we will show in
the next subsection that the updating ofbλ and aλ does
not need extra computation. Therefore, the efficiency of the
proposed encoding algorithm has not degraded in comparison
to EncoderA in [9].

It is also worth pointing out that the proposed algorithm can
also be used as an encoding algorithm for NSPC where the
encoding only has the propagation from left to right based on
the polarization structure similar to Fig.1. This indicates that
the minimum requirement of NSPC encoding is alsoN

2 log2N
XOR operations andN bits of memory.

B. Simplification for SPC encoder

One might think that we need extra bit memory forbλ and
aλ and extra computation for the updating ofaλ. In fact, φ,
bλ andaλ can share the same memory and only updatingφ is
enough for all updating. We will show this in the following.

In hardware implementation,φ is expressed in binary as
(bn−1 · · · b1b0)2, which is shown in Fig.2. Whenφ is updated,
the operations in current horizontal connection are decided
by the values ofbn−1, · · · , b1 and b0. (bn−1 · · · b1b0) will

Algorithm 1: Proposed Encoding algorithm for SPC
Input : u andx with unfilled bits (variables of (1));
Output : Full codewordu andx;

1 for λ = 0 : (n− 1) do //initialization
2 aλ ← 2λ − 1;

3 for φ = (N − 1) : −1 : 0 do
4 Store binary expression ofφ into bn−1 · · · b0;
5 if φ ∈ A then //information bits
6 if b0 = 0 then
7 D0,0 ← D0,0 ⊕ xφ;

8 else
9 D0,0 ← xφ;

10 for λ = 1 : (n− 1) do
11 if bλ = 0 then
12 Daλ,λ ← Daλ,λ ⊕Daλ−1,λ−1;

13 else
14 Daλ,λ ← Daλ−1,λ−1;

15 uφ ← Dan−1,n−1;

16 else //frozen bits
17 t← uφ;
18 for λ = (n− 1) : −1 : 1 do
19 if bλ = 0 then
20 t← t⊕Daλ,λ;

21 else
22 Daλ,λ ← t;

23 if b0 = 0 then
24 xφ ← xφ ⊕ t;

25 else
26 xφ ← t;
27 D0,0 ← t;

28 for λ = 1 : (n− 1) do
29 if aλ = 0 then
30 aλ ← 2λ;

31 aλ −−;

be bitwise visited as one switch to select the corresponding
operation for the propagation from right to left (or vice versa).

In layer λ, 2λ bits memory are required, which meansaλ
must be a number ofλ bits. Note that(bλ−1 · · · b0)2 has the
same value (in decimal) asaλ (λ > 0). Thus, aλ can be
obtained by selectingbλ−1 · · · b0 fromφ without extra memory
as shown in Fig.2. In layer 0,a0 is fixed to be 0 due to that
only one bit is required.

In Algorithm 1 , if a full word u is not required, line 15
can be deleted.

an-1=(bn-2 b1b0)2

a2=(b1b0)2

a1=(b0)2

a0=0

bn-1 b1 b0

Fig. 2. The bits memory forφ, bλ andbλ
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IV. D ISCUSSION ON PARALLEL ENCODING

The encoding algorithm described inAlgorithm 1 works in
a serial fashion. To further improve the encoding throughput,
we discuss the implementation of a parallel encoding with 2
bits at a time in this section.

Similar to the previous algorithm, the encoding is processed
from bottom to top as shown in Fig.1. Let2ψ and 2ψ + 1
denote the indices of the two horizontal connections being
processed at a time, respectively. Hereψ ∈ {0, 1, · · · , N2 −1}.
From Fig.1, it can be found that there are four different cases
of information propagation for two known bits in the encoding
process as depicted in Fig.3. However, it turns out that case
(d) never happens for polar codes constructed on symmetric
binary memoryless channels (S-BMC).

Proposition 1. For N = 2n (n ≥ 1) polar codes with coding
structure similar to Fig.1, the(2ψ)-th bit channel,W2ψ, must
be frozen if the(2ψ + 1)-th bit channel,W2ψ+1, is frozen on
S-BMC.

Proof: The result can be obtained by invoking Lemma 5
in [13].

(a) (b) (c) (d)

Fig. 3. The four cases with top being the(2ψ)-th bit and bottom being the
(2ψ+1)-th bit: (a) both are user bits, (b) both are frozen bits, (c) frozen bit
on top and user bit at the bottom, (d) user bit on top and frozenbit at the
bottom.

We now elaborate on the parallel encoding algorithm and
the corresponding memory requirements, whereφ = 2ψ and
ψ decreases from(N2 −1) to 0.aλ (λ > 0) andbλ are obtained
in the same way as in Subsection III.B anda0 is updated to be
the same asa1. In the following, we useD+1

aλ,λ
, u+1

φ andx+1
φ

to denote the two-bit vectors(Daλ,λ, Daλ+1,λ), (uφ, uφ+1)
and (xφ, xφ+1), respectively.

As shown in Fig.1, in layer 0 of case (a), with parallel
processing, the direct copying operation and XOR operation
are performed simultaneously. As such, one additional mem-
ory bit, denoted asD1,0, is required and then the above
operations are done asD+1

0,0 ← (xφ ⊕ xφ+1, xφ+1). In layer
λ(> 0), it can be noticed that the operation types of theφ-
th and(φ + 1)-th user bits are the same and will be decided
according tobλ, where the operations ofD+1

aλ,λ
← D+1

aλ−1,λ−1

are implemented whenbλ = 1 while the operations of
D+1
aλ,λ
← D+1

aλ,λ
⊕ D+1

aλ−1,λ−1 for bλ = 0. And the operations
of u+1

φ ← D+1
an−1,n−1 will be done at the last of case (a).

Note thatD+1
0,0 are idle when the process is done from layer

n − 1 to 1 and we use them as temporary variables in case
(b). Then, the process of case (b) is the same as lines 17-22
in Algorithm 1 but 2-bits per computation cycle. At the last,
u+1
φ is updated with(D0,0⊕D1,0, D1,0) where the new values

of D+1
0,0 after layer 1 are also expected values in the encoding.

Case (c) has two opposite information propagations and still
works in the serial mode asAlgorithm 1 in which D0,0 and

D1,0 are used to replacet in the frozen bit processing part
andD0,0 in the user bit processing part, respectively.

Consider polar codes withN = 1024 and code rate 1/2
constructed at signal-to-noise ratio 2dB under additive white
Gaussian noisy channel as an illustration, the number of case
(a), (b) and (c) are 135, 135 and 242 respectively, that is,
754 horizontal propagations will be implemented with our
proposed parallel encoding, which can obtain about 36% gain
in throughput with comparison toAlgorithm 1 .

From the above description, it can be noted that a new bit
memory, i.e.D1,0, is introduced in the parallel 2-bit encoding
algorithm while the temporary variablet in Algorithm 1 is no
longer required. Hence, the requirement of bit memory for the
parallel 2-bit encoding algorithm is the same asAlgorithm
1. Also, it can be easily verified that the number of XOR
operations remains unchanged.

Limited to the two opposite information propagations of
frozen bits and user bits in the SPC encoding, parallel
multiple-bit encoding for SPC is more complex and the storage
memory and computation will also increase, which is beyond
the discussion of this paper and will be left for future work.

V. CONCLUSIONS

We have presented an efficient encoding algorithm for SPC
which needN bits memory andN2 log2N XOR operation,
a minimum requirement for the available encoding methods.
By sharing memory, our analysis shows the algorithm can be
further simplified. To improve encoding throughput, a parallel
2-bit encoding algorithm has also been discussed, which shows
the parallel encoding algorithm can be achieved with the same
memory bits and XOR operations.
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