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Modelling RACH Arrivals and Collisions for
Human Type Communication

Abstract—The paper proposes an analytical model to evaluate
the collision probability on the Random-Access CHannel (RACH)
in LTE systems as a function of the number of User Equipments
(UEs), the number of available preambles and the Inter–arrival
times of the RACH Requests (IRR) of the average user. The
model for the IRR of the average user is obtained from real
traffic data captured at the eNodeB of a mobile operator, and
is derived by emulating the RRC state machine for different
Radio Resource Control Inactivity Timer (RRCIT ) settings. The
results of the presented study suggest that when RRCIT is set
to a few seconds a mixture model is more accurate than the
Poisson hypothesis both in modelling the IRR and in estimating
the RACH performance.

Index Terms—RACH Collision Probability, Random Access
Opportunity (RAO), Mixture Model, RRC State Machine, Radio
Resource Control (RRC) Inactivity Timer

I. INTRODUCTION

In LTE systems, an idle UE must access the RACH channel
to synchronize with the network before initiating any data
transfer. Upon a successful RACH procedure, radio resources
are assigned to the UE that switches from the Radio Re-
source Control (RRC) Idle State to the RRC Connected State.
Conversely, the opposite transition to the RRC Idle State
is regulated by the RRC Inactivity Timer (RRCIT ). In the
RRC Idle state, the RF circuitry has a near zero energy
consumption. Hence, lower RRCIT values reduce the device
energy consumption at the cost of increasing the signaling
load. As a result, other than its own generated traffic, the
number of RACH accesses performed by an UE is highly
influenced by the value of RRCIT . Today, eNodeBs can serve
up to a few thousands of UEs per cell. Hence, the traffic
generated by the RACH access procedures of the serviced
UEs may deteriorate the performance of the RACH channel.
3GPP [1] defines six key performance indicators to assess
new proposals of RACH operations. Theoretical results allow
to evaluate such performance parameters by exploiting the
Poisson hypothesis on the inter–arrival times of the RACH
requests [2].

To the best of our knowledge, few works have modeled the
RACH request traffic starting from actual data acquired on
a commercial eNodeB. The results of this study i) show the
inaccuracy of the Poisson hypothesis in modelling the offered
RACH traffic, ii) point out that for RRCIT set to a few seconds,
the Poisson hypothesis provides a conservative estimation
of RACH performance. This last result should stimulate the
research for revising some optimization procedure on the
RACH channel based on the Poisson hypothesis.

The rest of the document is organized as follows. After a
short description of the RACH procedure in section II, the
model for RACH inter–arrival times is given in section III.

RACH collision probabilities are derived in section IV and
assessed in section IV-A. Finally, section V concludes the
paper with final remarks.

II. BACKGROUND ON RACH ACCESS PROCEDURE

The random access procedure for requiring radio resources
is detailed in [3]. Our analysis focuses on the random access
procedure triggered when an UE in the RRC Idle state has to
receive/send a packet, i.e. when a transition to RRC Connected
is needed. To this aim, the UE starts the random access
procedure by sending the Random Access CHannel Preamble
(RACHP) on the Physical RACH (PRACH). The contention-
based operation of the RACH is based on (multi–channel)
ALOHA–type access, where each UE transmits its preamble
in the first available random–access slot. As detailed in [4],
the “PRACH Configuration Index” (PrachConfigIndex) defines
when the UEs can send a RACH request. To distinguish
UEs sending RACH requests simultaneously within the same
timeslot, each UE randomly selects a RACHP out of a pool of
available RACHPs. The maximum pool dimension is 64, but
it can be restricted by the eNodeB to reserve some pream-
bles for contention free procedure (e.g., during handover).
In summary, the number of Random Access Opportunities
(RAOs) per second available in an LTE cell depends on the
PrachConfigIndex and on the number of RACHP reserved
by the eNodeB for contention based procedures. When two
or more UEs simultaneously attempt to access the RACH
channel by using the same RACHP, a collision occurs and
a retransmission mechanism with backoff algorithm is started.

The preamble collision probability is one of the performance
indicators defined in 3GPP [1] to be considered in evaluating
the goodness of new proposals that intend to improve the
operation of RACH. In reference to [1], we elaborate on both
the definitions of collision probability given in section 6.3
(P(RAO)

c ) and in ANNEX B (P(HTC)
c ).

III. MODELLING INTER–RACH TIMES

The first goal of our analysis is to derive a statistical
model for the inter–arrival times of the UE RACH requests.
In general, such values depend on the configuration of the
eNodeB (specifically, in terms of RRCIT ) and on the traffic
generated by end-users. Our starting point is the traffic data
acquired by passive measurements carried out at a commercial
eNodeB of a mobile operator.

The monitored eNodeB is operative in the bandwidth of
1800 MHz, and is located in a business area of Turin,
Italy. Several one week long measurement sessions have been
carried out in different periods of the years 2013–2014. The
different sessions mostly spot the same qualitative results. The
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TABLE I
STATISTICAL PARAMETERS OF THE IRR j TIMESERIES

Dataset Size Mean (s) Covariance (s2) Coef. Var.
IRR2 22654 47.46 1.98e+04 2.96
IRR5 13424 80.03 3.16e+04 2.22
IRR10 9106 117.73 4.48e+04 1.80

simulation results refer to the most recent dataset, namely the
one acquired in February 2014. During each session, the traffic
flowing through the S1 interface is captured. Out of the avail-
able data, in this study we focus on the packet traffic of each
active user. Upon the necessary anonymization procedures and
after stripping out privacy–sensitive data, the acquired traffic
dump consisted of a list of entries each one reporting the
IP source and destination addresses of each observed packet
along with its timestamp. The actual information on the RACH
channel was not used since the RRCIT was set by the carrier
without accounting for energy aspects.

To obtain the inter–arrival times of RACH requests for
each user, an emulator of the RRC state machine has been
developed. For each user (say, user i), the input of the emulator
is the set of the packet inter–arrival times associated with
it. Taking into account the RRCIT setting, the output of
the emulator is the timeseries representing the Inter–arrival
times between successive RACH Requests (IRR) of the user
i. We emulated the RRC state machine for different RRCIT

values. The RRCIT settings considered in the study (i.e.
RRCIT = 2,5,10 s) have been chosen taking into account the
energy savings results of [5]. The timeseries IRRj , j = 2,5,10,
is obtained by merging the IRR obtained for all users i when
the RRCIT is set to j. The timeseries IRRj represent the
observations of inter–arrival times of the triggered RACH
procedures for the average user. Some statistical properties
of these timeseries are shown in Table I. Obviously, with
the same input traffic, the lower the RRCIT values, the
higher the number of triggered RACHs (hence, the lower
the mean of IRR values) generated by the emulator of the
RRC state machine. The coefficient of variation (CV ), which
represents a standardized measure of dispersion of a prob-
ability distribution, is defined as the ratio of the standard
deviation to the mean. Table I shows CV values higher than
1 in all of the datasets. Hence, the exponential distribution
(having CV = 1) seems to be inadequate. Different alternative
distribution families could be considered (e.g., Gamma, Cox,
etc.) to obtain CV > 1. Previous analyses, such as [6], show
that LTE traffic is generated by a set of applications/services
that have different behaviors, both at session level and at
packet level. Then, we assume that the resulting IRR timeseries
is obtained from a sum of behaviors, each one associated with
the different applications/services used by the average user.
The IRR generated by each application/service can be modeled
by an exponential distribution with its characteristic rate. This
assumption suggests to model IRR timeseries by i.i.d. random
variables with density equal to a mixture of exponentials:

f (x) =
C∑
c=1

αcλce−λc x (1)
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Fig. 1. QQ curves for RRCIT = 2, 5, 10s (Left to Right)

TABLE II
ESTIMATED PARAMETERS OF THE MIXTURE MODEL

Dataset αc λc
IRR2 0.7782, 0.0955, 0.0102, 0.1160 0.0804, 0.0192, 0.0013, 0.0046
IRR5 0.1935, 0.0149, 0.7916 0.0043, 0.0013, 0.0334
IRR10 0.0291, 0.2269, 0.7441 0.0015, 0.0039, 0.0185

where C is to the number of components in the mixture,
αc is the mixing coefficients (with

∑C
c=1 αc = 1), and λc is

the parameter of the c-th exponential component. Given that
such different behaviors can be clustered, we assume that
the number of components of this model should not be too
high.For each considered RRCIT value, the Bayesian model
selection approach has been applied to estimate the mixture
parameters of timeseries IRRj , with j = 2,5,10. In particular,
we referred to the algorithm presented in [7], where the prior
distribution assumes that αc and λc are independent. The
symmetric Dirichlet distribution is used as a prior of αc ,
whereas the gamma distribution Γ(a0,b0) is selected as the
conjugate prior distribution on λc . As suggested in [7], a0 is
set to a small value (we set a0 = 0.1) and b0 is chosen so that
the prior mean matches the mean Y of the data, i.e., b0 = a0 ∗Y .
The Markov Chain Monte Carlo (MCMC) algorithm described
in [8] has been used for the estimation of the model parameters
for different number of components. To estimate the number of
components, the Bayes Information Criterion (BIC) technique
(see [8] for details) has been used. The results indicate that
C = 3 is the optimal value for IRR5 and IRR10, whereas 4
components are needed for the IRR2.

The estimated parameters are summarized in Table II. In
addition, Table II shows that more than 74% of samples of all
timeseries can be modeled with exponential distribution with
a mean value around 50 s or less (λc are around 0.02 s−1 or
higher), whereas the remaining observations are in the range
of 250 s (i.e., λc around 0.004 s−1) and 750 s ((i.e., λc around
0.0013 s−1).

Figure 1 shows the quantile–quantile (QQ) plot for the
different timeseries. Each subfigure reports the QQ curves
obtained by comparing the actual dataset to the “Exponential”
model, and to the “Mixture” model. In the first case, the
parameters are set according to the mean values reported in
Table I, while in the second case according to Table II. To
immediately visualize the quality of the fitting results, the
reference “Best Fitting” curve is also reported. The figure
shows that for the IRR2 and IRR5 timeseries, the points
of the curve “Mixture” lay very close to the “Best Fitting”
curve, whereas they deviate for high quantile values in the
case of IRR10. Conversely, we observe that the points of the
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“Exponential” curve are always far from the “Best Fitting”
curve.

IV. RACH COLLISION PROBABILITY

In this section we derive the probability of collision for
RACH procedures initiated by different stations under a quite
general RACH request model. The result is then specialized
for the mixture model (1) and used next in the performance
evaluation section IV-A. To this aim, let us first indicate the
number of stations in the RRC Idle state with N and the
number of available preambles with k. In addition, let T be
the duration of each timeslot. At each timeslot, any station i
(with i ≤ N) in RRC Idle state may place a RACH request by
requesting a given preamble j, with j ≤ k.

Let Ai (n) ∈ {0,1} be the number of requests placed by
station i at time nT and with Ai, j (n) ∈ {0,1} the number of
requests placed by station i by selecting preamble j.

Assume now that stations in RRC Idle state may each
independently place a request with probability p, i.e.
Pr {Ai (n) = 1} = p and that preambles are selected uniformly
at random with probability 1/k. As such: Pr

{
Ai, j (n) = 1

}
=

p
k .

Consider now the total number of requests X j (n) to preamble
j at time nT : X j (n) =

∑N
i=1 Ai, j (n). At each time n, and for

each preamble, RACH collision occurs whenever X j (n) ≥ 2.
The random variable X j (n) has binomial distribution with
parameter p/k, and the number of RACH request failures
L j (n) is:

L j (n) =



0 if X j (n) < 2
X j (n) otherwise

(2)

Note that, since we assume the system at the statistical
equilibrium, the dependence on time can be safely omitted.
Hence, the mean number of RACH collisions to each single
preamble is E

[
L j

]
=

Np
k

(
1−

(
1− p

k

)N−1)
, and the overall

RACH collision probability P(HTC)
C

is:

P(HTC)
C

=
E
[
L j

]

E
[
X j

] = 1−
(
1−

p
k

)N−1
(3)

From the point of view of an external observer, instead, it is
easy to prove that the collision probability of a generic RAO
is given by:

P(RAO)
C

= 1− # of idle RAOs in τ s.
# of RAOs in τ s. −

# of successful RAOs in τ s.
# of RAOs in τ s.

= 1−
(
1− p

k

)N
−

Np
k

(
1− p

k

)N−1

(4)
Equations (3) and (4) assume the probability p of a RACH

request for any idle station at each timeslot is known. Hence,
the next step is to analytically find the value of p.

In the previous section, we assumed the process of RACH
requests to be a point process {t1, t2, . . . } in which the inter–
arrival times {X1,X2, . . . } form a sequence of i.i.d. random
variables each of them with probability density function given
by (1). More generally, by indicating the common pdf with
fX (x) and the common probability distribution with FX (x),
the overall arrival process is a renewal process [9] and the ar-
rival events are called renewals. Under this assumption, finding
the value of p is equivalent to computing the probability that

one renewal occurs in the generic time interval ((n−1)T,nT].
Notice that, depending on the renewal distribution, the inter–
arrival times can be arbitrarily small so that more than one
renewal event may occur in the same timeslot. However,
this phenomenon is not possible in practice and, as it will
be shown, its probability becomes analytically negligible for
physically reasonable model parameters and small timeslots.

In order to compute p, let us consider a generic timeslot
that begins at time t. As the beginning of the timeslot is asyn-
chronous with the arrival process, the first renewal following
time t occurs after time V , while the second, third, etc. occur
after time V + X2, V + X2 + X3, V + X2 + X3 + . . . . The time V
is called forward recurrence time, while X2,X3, . . . ... are usual
renewal times and the resulting renewal process is referred to
as modified. When t is large enough so that the system has
been running for long, it can be proven [9] that the forward
recurrence time has pdf fV (x) = 1−FX (x)

E[X] . Under the previous
hypothesis, the overall process is called equilibrium renewal
process and the probability p of at least one arrival in the
timeslot of length T is:

p = 1−Pr {V > T } (5)

The RACH collision probability and the RAO collision
probability are then readily obtained by substituting (5) in (3),
and (4), respectively. Finally, expression (5) can be specialized
when the pdf of renewals is that of (1). Indeed, in this case,

p = 1−
∑C

c=1
αc

λc
e−λcT∑C

c=1
αc

λc

(6)

So far, the value of p has been computed as the probability
of the complementary event of observing zero arrivals in a
timeslot. For the sake of completeness, the probability of
having exactly one arrival in a timeslot is given by:

Pr {N (T ) = 1} = Pr {V ≤ T } −Pr {V + X ≤ T } =

=

*
,
T

∑C
c=1α

2
ce
−λcT+

∑C
c=1

∑C
k,c

αcαk

(
e−λkT −e−λcT

)
λc−λk

+
-∑C

c=1
αc
λc

(7)

and it is easy to prove that, under practical parameters con-
figuration such as the ones of Table II, the difference between
the numbers obtained by equations (7) and (6) is in the order
of 10−4.

A. Performance Evaluation

The accuracy of the proposed model is assessed by simu-
lating a cell with 1000 UEs, each one independently placing
RACH requests with inter–arrival times picked randomly from
the IRRj timeseries. Simulation runs are carried out with
different RRCIT settings (namely, 2, 5, and 10s), and the
performance parameters (namely, P(HTC)

C
and P(RAO)

C
) are

estimated over an observation time of 1000 s. Figure 2
shows the average values of the P(HTC)

C
and the P(RAO)

C
along with the 95% confidence interval estimated over 10
simulation runs for the three RRCIT configurations. Moreover,
the figure reports the collision probability curves, P(HTC)

C
and

the P(RAO)
C

, derived in (3) and (4) respectively, using the values
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TABLE III
SIMULATION RESULTS - P(MTC )

c

Dataset and k Mixture Poisson Simulation
IRR2 −K = 10 0.0446 0.1113 0.0477
IRR2 −K = 30 0.0161 0.0410 0.0172
IRR2 −K = 50 0.0100 0.0251 0.0110
IRR5 −K = 10 0.0260 0.0226 0.0262
IRR5 −K = 30 0.0093 0.0081 0.0090
IRR5 −K = 50 0.0055 0.0049 0.0060
IRR10 −K = 10 0.0171 0.0174 0.018
IRR10 −K = 30 0.0061 0.0062 0.0058
IRR10 −K = 50 0.0037 0.0038 0.0044

of p computed for the renewal times IRRj modeled as in
section III (i.e., p is set according to relation (6)). The results
show an excellent adherence of the theoretical model with
respect to the simulation outcomes as the analytical curves
lay almost always within the 95% C.I. of simulations for
all RRCIT configurations. For clarity of visualization, we do
not report the analytical curves obtained with the Poissonian
model of the IRRj , obtained using the relations shown in [2].
The estimated P(MTC)

c for some k values are summarized
in Table III. The results refer to the theoretical estimation
carried out with the proposed model (column Mixture) and the
Possonian one (column Poisson). Such results are compared
to the average P(MTC)

c estimated by simulation when using
the actual IRRj sequence (column Simulation) as input.

The results clearly show the higher accuracy of the mixture
model with respect to the Poisson model for RRCIT = 2s. On
the contrary, for RRCIT = 5,10s the mixture model provides
marginal improvements of the accuracy of the performance
estimation. Similar conclusions can be obtained when the
P(RAO)
c is analyzed. The proposed theoretical model does not

account for the backoff mechanism, i.e. it implicitly assumes
that if two or more RACH requests collide, no successive
attempts will be made. To evaluate the impact of this assump-
tion on the performance evaluation accuracy, we modify the
simulation tool to account for the backoff mechanism. We vary
the Backoff Indicator (BI) in the range [20,320] ms, and set
a maximum number of retransmissions to 10. The simulation
results obtained loading the simulator with the IRRj dataset
and the PHTC

c curves obtained from (3) are shown in figure 3.
We report only the results for the border values of the tested BI
range, i.e. 20 and 320 ms. The results obtained with the other
tested BI values are within these two curves. The figure shows
that the accuracy of the proposed model is slightly affected for
k < 10 only. Again, for sake of visualization, we do not report
the results for P(RAO)

c , which lead to similar observations.
Furthermore, we observed that only for k < 3 a small number
of RACH requests (less than 10%) exceeded the maximum
number of retransmissions and thus were not acknowledged
by the eNodeB.

V. CONCLUSION

Upon the emulation of the RRC state machine with actual
traffic and different RRCIT settings, the paper presents a
procedure to model the inter–arrival times of RACH requests
by means of a mixture of exponential distributions. This pro-
cedure and the proposed analytical model provide an accurate
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